基于FMRF模型的激光雷达数据和共配频带分割优化算法

Yang Cao, Hong Wei, Huijie Zhao
{"title":"基于FMRF模型的激光雷达数据和共配频带分割优化算法","authors":"Yang Cao, Hong Wei, Huijie Zhao","doi":"10.1109/PRRS.2008.4783166","DOIUrl":null,"url":null,"abstract":"In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into tree, grass, building, and road regions by fusing remotely sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.","PeriodicalId":315798,"journal":{"name":"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization algorithms in FMRF model-based segmentation for LIDAR data and co-registered bands\",\"authors\":\"Yang Cao, Hong Wei, Huijie Zhao\",\"doi\":\"10.1109/PRRS.2008.4783166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into tree, grass, building, and road regions by fusing remotely sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.\",\"PeriodicalId\":315798,\"journal\":{\"name\":\"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2008.4783166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2008.4783166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用模糊马尔可夫随机场(FMRF)模型,通过融合遥感LIDAR数据和共配色带,即扫描的航空彩色(RGB)照片和近红外(NIR)照片,将地物分割为树木、草地、建筑物和道路区域。将FMRF模型定义为模糊域上的马尔可夫随机场模型。比较了FMRF模型中的Lagrange multiplier (LM)、迭代条件模式(ICM)和模拟退火(SA)三种优化算法的计算成本和分割精度。结果表明,基于FMRF模型的ICM算法在激光雷达数据和共配波段的土地覆盖分割中平衡了计算成本和分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization algorithms in FMRF model-based segmentation for LIDAR data and co-registered bands
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into tree, grass, building, and road regions by fusing remotely sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信