物联网应用的可扩展实时分析

Khalid Mahmood, T. Risch
{"title":"物联网应用的可扩展实时分析","authors":"Khalid Mahmood, T. Risch","doi":"10.1109/SMARTCOMP52413.2021.00084","DOIUrl":null,"url":null,"abstract":"Large-scale industrial internet of things (IIoT) applications usually access distributed equipment where high-volume sensor streams are processed. The building of scalable analytic queries and models over such streams could potentially enhance various industrial processes management tasks, e.g., distribution, delivery, and predictive online maintenance. To enable real-time and historical analytics over distributed IIoT applications, we have combined an edge data stream management system (EDSMS), sa.engine, with the highly distributed NoSQL database MongoDB. For supporting advanced analytics and high-volume stream injection into MongoDB, we integrated an extended query processing (EQP) system with sa.engine and MongoDB. This work demonstrates how EQP provides a holistic data management solution for IIoT based on a use case for sound anomaly detection of distributed equipment.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Real-Time Analytics for IoT Applications\",\"authors\":\"Khalid Mahmood, T. Risch\",\"doi\":\"10.1109/SMARTCOMP52413.2021.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale industrial internet of things (IIoT) applications usually access distributed equipment where high-volume sensor streams are processed. The building of scalable analytic queries and models over such streams could potentially enhance various industrial processes management tasks, e.g., distribution, delivery, and predictive online maintenance. To enable real-time and historical analytics over distributed IIoT applications, we have combined an edge data stream management system (EDSMS), sa.engine, with the highly distributed NoSQL database MongoDB. For supporting advanced analytics and high-volume stream injection into MongoDB, we integrated an extended query processing (EQP) system with sa.engine and MongoDB. This work demonstrates how EQP provides a holistic data management solution for IIoT based on a use case for sound anomaly detection of distributed equipment.\",\"PeriodicalId\":330785,\"journal\":{\"name\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP52413.2021.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大规模工业物联网(IIoT)应用通常访问处理大量传感器流的分布式设备。在这些流上构建可伸缩的分析查询和模型可以潜在地增强各种工业过程管理任务,例如,分发、交付和预测性在线维护。为了实现对分布式工业物联网应用的实时和历史分析,我们结合了边缘数据流管理系统(EDSMS)。引擎,配合高度分布式的NoSQL数据库MongoDB。为了支持MongoDB的高级分析和大容量流注入,我们将扩展查询处理(EQP)系统与sa集成在一起。引擎和MongoDB。这项工作展示了EQP如何基于分布式设备的声音异常检测用例为工业物联网提供整体数据管理解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Real-Time Analytics for IoT Applications
Large-scale industrial internet of things (IIoT) applications usually access distributed equipment where high-volume sensor streams are processed. The building of scalable analytic queries and models over such streams could potentially enhance various industrial processes management tasks, e.g., distribution, delivery, and predictive online maintenance. To enable real-time and historical analytics over distributed IIoT applications, we have combined an edge data stream management system (EDSMS), sa.engine, with the highly distributed NoSQL database MongoDB. For supporting advanced analytics and high-volume stream injection into MongoDB, we integrated an extended query processing (EQP) system with sa.engine and MongoDB. This work demonstrates how EQP provides a holistic data management solution for IIoT based on a use case for sound anomaly detection of distributed equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信