PWM电压逆变器的过调制策略

R. Kerkman, D. Leggate, B. Seibel, T. Rowan
{"title":"PWM电压逆变器的过调制策略","authors":"R. Kerkman, D. Leggate, B. Seibel, T. Rowan","doi":"10.1109/IECON.1993.339240","DOIUrl":null,"url":null,"abstract":"Pulse width modulated (PWM) inverters experience a reduction in gain when overmodulation occurs. The pulse dropping or transition region is examined for continuous and discontinuous modulation strategies. Transition region characteristics for a number of modulation strategies are introduced. The effect of the transition region on field oriented control is presented. The adverse effects of bus disturbances on current regulated AC inverters, while in the transition region, are demonstrated by experimental results. The problems encountered are the consequence of the reduced gain of the PWM inverter regardless of the PWM strategy. A compensated modulation technique (CMT) adaptable to continuous and discontinuous modulators eliminates the voltage error and transitions to six-step operation without inducing a voltage transient. The CMT applies to voltage and current regulated PWM inverters employing most of the modern switching strategies. Experimental results presented in the paper demonstrate the CMT's smooth transition to six-step and the improved performance a CMT-PWM algorithm provides.<<ETX>>","PeriodicalId":132101,"journal":{"name":"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An overmodulation strategy for PWM voltage inverters\",\"authors\":\"R. Kerkman, D. Leggate, B. Seibel, T. Rowan\",\"doi\":\"10.1109/IECON.1993.339240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulse width modulated (PWM) inverters experience a reduction in gain when overmodulation occurs. The pulse dropping or transition region is examined for continuous and discontinuous modulation strategies. Transition region characteristics for a number of modulation strategies are introduced. The effect of the transition region on field oriented control is presented. The adverse effects of bus disturbances on current regulated AC inverters, while in the transition region, are demonstrated by experimental results. The problems encountered are the consequence of the reduced gain of the PWM inverter regardless of the PWM strategy. A compensated modulation technique (CMT) adaptable to continuous and discontinuous modulators eliminates the voltage error and transitions to six-step operation without inducing a voltage transient. The CMT applies to voltage and current regulated PWM inverters employing most of the modern switching strategies. Experimental results presented in the paper demonstrate the CMT's smooth transition to six-step and the improved performance a CMT-PWM algorithm provides.<<ETX>>\",\"PeriodicalId\":132101,\"journal\":{\"name\":\"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1993.339240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1993.339240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

当过调制发生时,脉宽调制(PWM)逆变器的增益会降低。对连续和不连续调制策略的脉冲下降或过渡区域进行了检查。介绍了几种调制策略的过渡区域特性。讨论了过渡区对磁场定向控制的影响。实验结果证明了母线干扰对电流调节交流逆变器在过渡区产生的不利影响。无论采用何种PWM策略,所遇到的问题都是PWM逆变器增益降低的结果。一种适用于连续和不连续调制器的补偿调制技术(CMT)消除了电压误差,并在不引起电压瞬态的情况下过渡到六步操作。CMT适用于采用大多数现代开关策略的电压和电流调节PWM逆变器。实验结果证明了CMT平滑过渡到六步控制,以及CMT- pwm算法所提供的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overmodulation strategy for PWM voltage inverters
Pulse width modulated (PWM) inverters experience a reduction in gain when overmodulation occurs. The pulse dropping or transition region is examined for continuous and discontinuous modulation strategies. Transition region characteristics for a number of modulation strategies are introduced. The effect of the transition region on field oriented control is presented. The adverse effects of bus disturbances on current regulated AC inverters, while in the transition region, are demonstrated by experimental results. The problems encountered are the consequence of the reduced gain of the PWM inverter regardless of the PWM strategy. A compensated modulation technique (CMT) adaptable to continuous and discontinuous modulators eliminates the voltage error and transitions to six-step operation without inducing a voltage transient. The CMT applies to voltage and current regulated PWM inverters employing most of the modern switching strategies. Experimental results presented in the paper demonstrate the CMT's smooth transition to six-step and the improved performance a CMT-PWM algorithm provides.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信