基于稀疏高斯过程的在线信息路径规划

Rajat Mishra, M. Chitre, Sanjay Swarup
{"title":"基于稀疏高斯过程的在线信息路径规划","authors":"Rajat Mishra, M. Chitre, Sanjay Swarup","doi":"10.1109/OCEANSKOBE.2018.8559183","DOIUrl":null,"url":null,"abstract":"Estimating the environmental fields for large survey areas is a difficult task, primarily because of the field's spatio-temporal nature. A good approach in performing this task is to do adaptive sampling using robots. In such a scenario, robots have limited time to collect data before the field varies significantly. In this paper, we suggest an algorithm, AdaPP, to perform this task of data collection within a constraint on sampling time and provide an approximation of the environmental field. We test our performance against conventional sampling paths and show that we are able to obtain a good approximation of the field within the stipulated time.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Online Informative Path Planning Using Sparse Gaussian Processes\",\"authors\":\"Rajat Mishra, M. Chitre, Sanjay Swarup\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the environmental fields for large survey areas is a difficult task, primarily because of the field's spatio-temporal nature. A good approach in performing this task is to do adaptive sampling using robots. In such a scenario, robots have limited time to collect data before the field varies significantly. In this paper, we suggest an algorithm, AdaPP, to perform this task of data collection within a constraint on sampling time and provide an approximation of the environmental field. We test our performance against conventional sampling paths and show that we are able to obtain a good approximation of the field within the stipulated time.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于环境场的时空性质,对大型调查区域的环境场进行估算是一项艰巨的任务。执行此任务的一个好方法是使用机器人进行自适应采样。在这种情况下,机器人在现场发生重大变化之前收集数据的时间有限。在本文中,我们提出了一种算法,AdaPP,在采样时间的限制下执行数据收集任务,并提供了环境场的近似。我们用传统的采样路径测试了我们的性能,并表明我们能够在规定的时间内获得很好的近似场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Informative Path Planning Using Sparse Gaussian Processes
Estimating the environmental fields for large survey areas is a difficult task, primarily because of the field's spatio-temporal nature. A good approach in performing this task is to do adaptive sampling using robots. In such a scenario, robots have limited time to collect data before the field varies significantly. In this paper, we suggest an algorithm, AdaPP, to perform this task of data collection within a constraint on sampling time and provide an approximation of the environmental field. We test our performance against conventional sampling paths and show that we are able to obtain a good approximation of the field within the stipulated time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信