受限球面反褶积光纤方向的不确定性估计

B. Jeurissen, A. Leemans, J. Tournier, Jan Sijbers
{"title":"受限球面反褶积光纤方向的不确定性估计","authors":"B. Jeurissen, A. Leemans, J. Tournier, Jan Sijbers","doi":"10.1109/ISBI.2008.4541144","DOIUrl":null,"url":null,"abstract":"Constrained spherical deconvolution (CSD) is a new reconstruction technique that extracts white matter fiber orientations from diffusion weighted MRI data of the brain. However, since these orientations are estimated from noisy data, they are subject to errors, which propagate during fiber tractography. Therefore, it is important to estimate the uncertainty associated with the fiber orientations. In this work, we investigate the performance of a statistical method called the bootstrap, when estimating confidence intervals for CSD fiber orientations. The bootstrap is a nonparametric statistical technique based on data resampling. We used Monte Carlo simulations to measure both its accuracy and precision when applied to CSD. Also, we evaluated an alternative method called the bootknife, which aims to increase the precision of the bootstrap.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"752 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimation of uncertainty in constrained spherical deconvolution fiber orientations\",\"authors\":\"B. Jeurissen, A. Leemans, J. Tournier, Jan Sijbers\",\"doi\":\"10.1109/ISBI.2008.4541144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained spherical deconvolution (CSD) is a new reconstruction technique that extracts white matter fiber orientations from diffusion weighted MRI data of the brain. However, since these orientations are estimated from noisy data, they are subject to errors, which propagate during fiber tractography. Therefore, it is important to estimate the uncertainty associated with the fiber orientations. In this work, we investigate the performance of a statistical method called the bootstrap, when estimating confidence intervals for CSD fiber orientations. The bootstrap is a nonparametric statistical technique based on data resampling. We used Monte Carlo simulations to measure both its accuracy and precision when applied to CSD. Also, we evaluated an alternative method called the bootknife, which aims to increase the precision of the bootstrap.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"752 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

约束球面反褶积(CSD)是一种从脑弥散加权MRI数据中提取白质纤维方向的新重建技术。然而,由于这些方向是根据有噪声的数据估计的,因此它们受到误差的影响,这些误差在光纤束束成像过程中传播。因此,估计与纤维取向有关的不确定性是很重要的。在这项工作中,我们研究了一种称为自举法的统计方法在估计CSD纤维取向的置信区间时的性能。自举是一种基于数据重采样的非参数统计技术。我们使用蒙特卡罗模拟来测量其应用于CSD时的准确性和精度。此外,我们还评估了一种称为bootknife的替代方法,该方法旨在提高bootstrap的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of uncertainty in constrained spherical deconvolution fiber orientations
Constrained spherical deconvolution (CSD) is a new reconstruction technique that extracts white matter fiber orientations from diffusion weighted MRI data of the brain. However, since these orientations are estimated from noisy data, they are subject to errors, which propagate during fiber tractography. Therefore, it is important to estimate the uncertainty associated with the fiber orientations. In this work, we investigate the performance of a statistical method called the bootstrap, when estimating confidence intervals for CSD fiber orientations. The bootstrap is a nonparametric statistical technique based on data resampling. We used Monte Carlo simulations to measure both its accuracy and precision when applied to CSD. Also, we evaluated an alternative method called the bootknife, which aims to increase the precision of the bootstrap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信