集成基于时间的adc的全差分恒电位器电路

S. Subhan, Sachin Khapli, Yong-Ak Song, S. Ha
{"title":"集成基于时间的adc的全差分恒电位器电路","authors":"S. Subhan, Sachin Khapli, Yong-Ak Song, S. Ha","doi":"10.1109/BIOCAS.2019.8919031","DOIUrl":null,"url":null,"abstract":"A fully differential CMOS analog front-end circuit for electrochemical sensing is presented. Its first stage is based on a differential transimpedance amplifier (TIA) with an input common-mode feedback to maintain the potentials at the differential working electrodes. The differential output of the first stage is further amplified at the second stage to resolve a smaller range of current differences down to less than 100 fA. The integration capacitor in the first stage and the gain of the second stage are programmable to cover a wide range of the input current ranges up to a range of μA. The proposed potentiostat incorporates two ADC stages, one for each stage. While the outputs of the first stage are compared with a threshold voltage, the whole integration time for both the currents is converted to digital by counters. When difference between the two inputs is too small to be resolved by this ADC, the second stage now becomes a dual-slope ADC to quantize the amplified difference. The ADC in the second stage incorporates a charge/discharge current source, which allows a time-domain measurement of the amplified signal. This method avoids the use of a separate ADC stage, which will consume additional power and area. The proposed potentiostat circuit is designed in 180nm CMOS SOI process technology. Simulation results show that this architecture can accurately measure the differential input current from 1 pA to 1 μA. The minimum input referred integrated current noise in 1 Hz to 10 kHz bandwidth is less than 100 fA with power consumption of 15 μA from ±1-V supply. This fully differential design is adequate to be integrated in an implantable amperometric electrochemical sensing device with low area and power requirements while offering robustness to background current variations.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fully Differential Potentiostat Circuit with Integrated Time-based ADCs\",\"authors\":\"S. Subhan, Sachin Khapli, Yong-Ak Song, S. Ha\",\"doi\":\"10.1109/BIOCAS.2019.8919031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully differential CMOS analog front-end circuit for electrochemical sensing is presented. Its first stage is based on a differential transimpedance amplifier (TIA) with an input common-mode feedback to maintain the potentials at the differential working electrodes. The differential output of the first stage is further amplified at the second stage to resolve a smaller range of current differences down to less than 100 fA. The integration capacitor in the first stage and the gain of the second stage are programmable to cover a wide range of the input current ranges up to a range of μA. The proposed potentiostat incorporates two ADC stages, one for each stage. While the outputs of the first stage are compared with a threshold voltage, the whole integration time for both the currents is converted to digital by counters. When difference between the two inputs is too small to be resolved by this ADC, the second stage now becomes a dual-slope ADC to quantize the amplified difference. The ADC in the second stage incorporates a charge/discharge current source, which allows a time-domain measurement of the amplified signal. This method avoids the use of a separate ADC stage, which will consume additional power and area. The proposed potentiostat circuit is designed in 180nm CMOS SOI process technology. Simulation results show that this architecture can accurately measure the differential input current from 1 pA to 1 μA. The minimum input referred integrated current noise in 1 Hz to 10 kHz bandwidth is less than 100 fA with power consumption of 15 μA from ±1-V supply. This fully differential design is adequate to be integrated in an implantable amperometric electrochemical sensing device with low area and power requirements while offering robustness to background current variations.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8919031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于电化学传感的全差分CMOS模拟前端电路。它的第一级是基于一个差分跨阻放大器(TIA)的输入共模反馈,以维持差分工作电极的电位。第一级的差分输出在第二级进一步放大,以解决较小范围的电流差异,直至小于100 fA。第一级的集成电容和第二级的增益是可编程的,可以覆盖很大的输入电流范围,最大可达μA。所提出的恒电位器包含两个ADC级,每个级一个。当第一级的输出与阈值电压进行比较时,两个电流的整个积分时间通过计数器转换为数字。当两个输入之间的差异太小而无法由该ADC解决时,第二阶段现在变成双斜率ADC来量化放大的差异。第二级的ADC包含一个充电/放电电流源,允许对放大信号进行时域测量。这种方法避免了使用单独的ADC级,这将消耗额外的功率和面积。所提出的恒电位器电路采用180nm CMOS SOI工艺设计。仿真结果表明,该结构能够准确测量1 ~ 1 μA的差分输入电流。在±1v供电时,在1hz ~ 10khz带宽范围内的最小输入参考集成电流噪声小于100fa,功耗为15 μA。这种完全差分设计足以集成在植入式安培电化学传感装置中,具有低面积和功耗要求,同时对背景电流变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fully Differential Potentiostat Circuit with Integrated Time-based ADCs
A fully differential CMOS analog front-end circuit for electrochemical sensing is presented. Its first stage is based on a differential transimpedance amplifier (TIA) with an input common-mode feedback to maintain the potentials at the differential working electrodes. The differential output of the first stage is further amplified at the second stage to resolve a smaller range of current differences down to less than 100 fA. The integration capacitor in the first stage and the gain of the second stage are programmable to cover a wide range of the input current ranges up to a range of μA. The proposed potentiostat incorporates two ADC stages, one for each stage. While the outputs of the first stage are compared with a threshold voltage, the whole integration time for both the currents is converted to digital by counters. When difference between the two inputs is too small to be resolved by this ADC, the second stage now becomes a dual-slope ADC to quantize the amplified difference. The ADC in the second stage incorporates a charge/discharge current source, which allows a time-domain measurement of the amplified signal. This method avoids the use of a separate ADC stage, which will consume additional power and area. The proposed potentiostat circuit is designed in 180nm CMOS SOI process technology. Simulation results show that this architecture can accurately measure the differential input current from 1 pA to 1 μA. The minimum input referred integrated current noise in 1 Hz to 10 kHz bandwidth is less than 100 fA with power consumption of 15 μA from ±1-V supply. This fully differential design is adequate to be integrated in an implantable amperometric electrochemical sensing device with low area and power requirements while offering robustness to background current variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信