掌纹识别中主成分分析与自适应主成分提取的比较

Azadeh Ghandehari, R. Safabakhsh
{"title":"掌纹识别中主成分分析与自适应主成分提取的比较","authors":"Azadeh Ghandehari, R. Safabakhsh","doi":"10.1109/ICHB.2011.6094307","DOIUrl":null,"url":null,"abstract":"This paper investigates palmprint recognition using Principal Component Analysis (PCA) and the Adaptive Principal component EXtraction (APEX) which is one of the PCA techniques involving neural network. Through implementing the PCA and APEX algorithms for extracting features and applying them to palmprint recognition with two classifiers, Euclidean distance and Hamming distance, it was made known that APEX algorithm is efficient in palmprint recognition and the rate of recognition given by APEX is way more than PCA.","PeriodicalId":378764,"journal":{"name":"2011 International Conference on Hand-Based Biometrics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Comparison of Principal Component Analysis and Adaptive Principal Component Extraction for Palmprint Recognition\",\"authors\":\"Azadeh Ghandehari, R. Safabakhsh\",\"doi\":\"10.1109/ICHB.2011.6094307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates palmprint recognition using Principal Component Analysis (PCA) and the Adaptive Principal component EXtraction (APEX) which is one of the PCA techniques involving neural network. Through implementing the PCA and APEX algorithms for extracting features and applying them to palmprint recognition with two classifiers, Euclidean distance and Hamming distance, it was made known that APEX algorithm is efficient in palmprint recognition and the rate of recognition given by APEX is way more than PCA.\",\"PeriodicalId\":378764,\"journal\":{\"name\":\"2011 International Conference on Hand-Based Biometrics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Hand-Based Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHB.2011.6094307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Hand-Based Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHB.2011.6094307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了基于主成分分析(PCA)和自适应主成分提取(APEX)的掌纹识别方法。通过实现PCA和APEX算法提取掌纹特征,并将其应用于欧氏距离和汉明距离两种分类器的掌纹识别,证明了APEX算法在掌纹识别中是有效的,APEX算法的识别率远远高于PCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Principal Component Analysis and Adaptive Principal Component Extraction for Palmprint Recognition
This paper investigates palmprint recognition using Principal Component Analysis (PCA) and the Adaptive Principal component EXtraction (APEX) which is one of the PCA techniques involving neural network. Through implementing the PCA and APEX algorithms for extracting features and applying them to palmprint recognition with two classifiers, Euclidean distance and Hamming distance, it was made known that APEX algorithm is efficient in palmprint recognition and the rate of recognition given by APEX is way more than PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信