预测模型在木薯产品供需管理中的应用

Natthaya Choosuk, A. Kengpol
{"title":"预测模型在木薯产品供需管理中的应用","authors":"Natthaya Choosuk, A. Kengpol","doi":"10.14416/J.IJAST.2016.05.003","DOIUrl":null,"url":null,"abstract":"The objectives of this research are to generate models that can effectively forecast the supply and demand of four cassava products. The appropriate forecasting models for cassava production volume is Back Propagation Neural Network (BPN) 4-14-1, cassava starch is BPN 7-12-1, cassava chip is BPN 7-14-1, cassava pellets is Multiple Linear Regression (MLP), and sago is BPN 7-13-1. Then, Linear Programming is used to calculate the optimization of cassava products to obtain the maximum profit and for cassava plant areas to obtain the maximum yield per area. The benefits of this research can support management planning for farmers and manufacturers.","PeriodicalId":352801,"journal":{"name":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Application of Forecasting Models for the Supply and Demand Management of Cassava Products\",\"authors\":\"Natthaya Choosuk, A. Kengpol\",\"doi\":\"10.14416/J.IJAST.2016.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objectives of this research are to generate models that can effectively forecast the supply and demand of four cassava products. The appropriate forecasting models for cassava production volume is Back Propagation Neural Network (BPN) 4-14-1, cassava starch is BPN 7-12-1, cassava chip is BPN 7-14-1, cassava pellets is Multiple Linear Regression (MLP), and sago is BPN 7-13-1. Then, Linear Programming is used to calculate the optimization of cassava products to obtain the maximum profit and for cassava plant areas to obtain the maximum yield per area. The benefits of this research can support management planning for farmers and manufacturers.\",\"PeriodicalId\":352801,\"journal\":{\"name\":\"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/J.IJAST.2016.05.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/J.IJAST.2016.05.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是生成能够有效预测四种木薯产品供需的模型。适宜的木薯产量预测模型为Back Propagation Neural Network (BPN) 4-14-1、木薯淀粉预测模型为BPN 7-12-1、木薯切片预测模型为BPN 7-14-1、木薯颗粒预测模型为多元线性回归(MLP)模型、西米预测模型为BPN 7-13-1。然后,利用线性规划方法计算木薯产品的优化,以获得最大的利润,木薯种植面积获得最大的单产。这项研究的好处可以支持农民和制造商的管理规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of Forecasting Models for the Supply and Demand Management of Cassava Products
The objectives of this research are to generate models that can effectively forecast the supply and demand of four cassava products. The appropriate forecasting models for cassava production volume is Back Propagation Neural Network (BPN) 4-14-1, cassava starch is BPN 7-12-1, cassava chip is BPN 7-14-1, cassava pellets is Multiple Linear Regression (MLP), and sago is BPN 7-13-1. Then, Linear Programming is used to calculate the optimization of cassava products to obtain the maximum profit and for cassava plant areas to obtain the maximum yield per area. The benefits of this research can support management planning for farmers and manufacturers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信