基于扩展铁损模型的低阶集总参数热网的永磁同步电机温度估计

E. Gedlu, O. Wallscheid, J. Böcker
{"title":"基于扩展铁损模型的低阶集总参数热网的永磁同步电机温度估计","authors":"E. Gedlu, O. Wallscheid, J. Böcker","doi":"10.1049/icp.2021.1017","DOIUrl":null,"url":null,"abstract":"Since temperature rise in electric machines is mainly due to power losses during electro-mechanical power conversion, temperature estimation is highly attached to power loss modelling. In this contribution, an extended iron loss model is introduced with a direct identification methodology in the context of temperature estimation. The iron loss model is implemented as part of a fourthorder lumped-parameter thermal network (LPTN), which is parametrised using empirical measurements and global identification. Once parameters are identified using training data, the LPTN model is validated using three unseen profiles cross-validation. Satisfactory estimation is achieved with the average mean squared error of 2.1 K2 and the error bias close to zero.","PeriodicalId":188371,"journal":{"name":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"PERMANENT MAGNET SYNCHRONOUS MACHINE TEMPERATURE ESTIMATION USING LOW-ORDER LUMPED-PARAMETER THERMAL NETWORK WITH EXTENDED IRON LOSS MODEL\",\"authors\":\"E. Gedlu, O. Wallscheid, J. Böcker\",\"doi\":\"10.1049/icp.2021.1017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since temperature rise in electric machines is mainly due to power losses during electro-mechanical power conversion, temperature estimation is highly attached to power loss modelling. In this contribution, an extended iron loss model is introduced with a direct identification methodology in the context of temperature estimation. The iron loss model is implemented as part of a fourthorder lumped-parameter thermal network (LPTN), which is parametrised using empirical measurements and global identification. Once parameters are identified using training data, the LPTN model is validated using three unseen profiles cross-validation. Satisfactory estimation is achieved with the average mean squared error of 2.1 K2 and the error bias close to zero.\",\"PeriodicalId\":188371,\"journal\":{\"name\":\"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于电机的温升主要是由于机电功率转换过程中的功率损耗造成的,因此温度估计高度依赖于功率损耗建模。在这一贡献中,一个扩展的铁损失模型与温度估计的直接识别方法相结合。铁损模型作为四阶集总参数热网络(LPTN)的一部分实现,该网络使用经验测量和全局识别进行参数化。一旦使用训练数据确定了参数,LPTN模型将使用三个不可见的配置文件进行交叉验证。得到了满意的估计,平均均方误差为2.1 K2,误差偏差接近于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERMANENT MAGNET SYNCHRONOUS MACHINE TEMPERATURE ESTIMATION USING LOW-ORDER LUMPED-PARAMETER THERMAL NETWORK WITH EXTENDED IRON LOSS MODEL
Since temperature rise in electric machines is mainly due to power losses during electro-mechanical power conversion, temperature estimation is highly attached to power loss modelling. In this contribution, an extended iron loss model is introduced with a direct identification methodology in the context of temperature estimation. The iron loss model is implemented as part of a fourthorder lumped-parameter thermal network (LPTN), which is parametrised using empirical measurements and global identification. Once parameters are identified using training data, the LPTN model is validated using three unseen profiles cross-validation. Satisfactory estimation is achieved with the average mean squared error of 2.1 K2 and the error bias close to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信