基于人脸、语音和签名特征的噪声鲁棒多模态生物识别身份验证系统

P., Kartik, R. V. S. s., Vara Prasad, S. R. M. Prasanna
{"title":"基于人脸、语音和签名特征的噪声鲁棒多模态生物识别身份验证系统","authors":"P., Kartik, R. V. S. s., Vara Prasad, S. R. M. Prasanna","doi":"10.1109/INDCON.2008.4768795","DOIUrl":null,"url":null,"abstract":"In this work, we present a multimodal biometric system using face, speech and signature features which is robust to noise. Face recognition is done using subspace, principal component analysis (PCA) and linear discriminant analysis (LDA) techniques. Speaker recognition system is built using mel frequency cepstral coefficients (MFCC) for feature extraction and vector quantization (VQ) for pattern matching. An off-line signature recognition system is built using vertical and horizontal projection profiles (VPP, HPP) and discrete cosine transform (DCT) for feature extraction. A multimodal biometric database with face, speech and signature biometric features has been collected for 30 users. A multimodal biometric system is built using score level fusion. Sum rule was used for the fusion of the biometric scores. Experimental results show the efficacy of the multimodal biometric system when the biometric data is affected by noise.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Noise robust multimodal biometric person authentication system using face, speech and signature features\",\"authors\":\"P., Kartik, R. V. S. s., Vara Prasad, S. R. M. Prasanna\",\"doi\":\"10.1109/INDCON.2008.4768795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a multimodal biometric system using face, speech and signature features which is robust to noise. Face recognition is done using subspace, principal component analysis (PCA) and linear discriminant analysis (LDA) techniques. Speaker recognition system is built using mel frequency cepstral coefficients (MFCC) for feature extraction and vector quantization (VQ) for pattern matching. An off-line signature recognition system is built using vertical and horizontal projection profiles (VPP, HPP) and discrete cosine transform (DCT) for feature extraction. A multimodal biometric database with face, speech and signature biometric features has been collected for 30 users. A multimodal biometric system is built using score level fusion. Sum rule was used for the fusion of the biometric scores. Experimental results show the efficacy of the multimodal biometric system when the biometric data is affected by noise.\",\"PeriodicalId\":196254,\"journal\":{\"name\":\"2008 Annual IEEE India Conference\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2008.4768795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项工作中,我们提出了一种多模态生物识别系统,该系统使用面部,语音和签名特征,对噪声具有鲁棒性。人脸识别采用子空间、主成分分析(PCA)和线性判别分析(LDA)技术。利用低频倒谱系数(MFCC)进行特征提取,利用矢量量化(VQ)进行模式匹配,构建了说话人识别系统。利用垂直和水平投影轮廓(VPP、HPP)和离散余弦变换(DCT)进行特征提取,构建了离线签名识别系统。收集了30个用户的面部、语音和签名特征的多模态生物特征数据库。采用分数水平融合技术构建了多模态生物识别系统。采用和规则对生物特征评分进行融合。实验结果表明,当生物特征数据受噪声影响时,多模态生物识别系统是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise robust multimodal biometric person authentication system using face, speech and signature features
In this work, we present a multimodal biometric system using face, speech and signature features which is robust to noise. Face recognition is done using subspace, principal component analysis (PCA) and linear discriminant analysis (LDA) techniques. Speaker recognition system is built using mel frequency cepstral coefficients (MFCC) for feature extraction and vector quantization (VQ) for pattern matching. An off-line signature recognition system is built using vertical and horizontal projection profiles (VPP, HPP) and discrete cosine transform (DCT) for feature extraction. A multimodal biometric database with face, speech and signature biometric features has been collected for 30 users. A multimodal biometric system is built using score level fusion. Sum rule was used for the fusion of the biometric scores. Experimental results show the efficacy of the multimodal biometric system when the biometric data is affected by noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信