T. Kohler, Frank Dürr, Christian Baumlisberger, K. Rothermel
{"title":"在白盒网络硬件上进行分布式控制的轻量级虚拟化","authors":"T. Kohler, Frank Dürr, Christian Baumlisberger, K. Rothermel","doi":"10.23919/CNSM.2017.8256045","DOIUrl":null,"url":null,"abstract":"Recent developments in networking hardware and software-defined networking have enabled full distribution of network control to reduce control latency and increase reliability. However, both, hardware and software of current white-box networking hardware are highly heterogeneous, which limits the deployment and operation of switch-local control applications. Furthermore, switch-local control raises yet unconsidered security concerns. In this paper, we present our concept of in-forward-element processing, which leverages the open access to the control plane of white-box networking hardware to deploy control logic directly onto switches. We combine local control applications with lightweight virtualization to cope with networking hardware heterogeneity and to achieve required isolation properties and ease of management. Beyond distributed network control, we show this scheme is also beneficial for implementing switch-local virtual network functions (NFV), processing packets. Highlighting the practicability of the concepts, we provide an overview of the current white-box networking hardware and software landscape and their compatibility with lightweight virtualization technologies. To this end, we perform an empirical evaluation of NOS-virtualization combinations on such hardware and compare the results with respect to incurring virtualization overhead.","PeriodicalId":211611,"journal":{"name":"2017 13th International Conference on Network and Service Management (CNSM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"InFEP — Lightweight virtualization of distributed control on white-box networking hardware\",\"authors\":\"T. Kohler, Frank Dürr, Christian Baumlisberger, K. Rothermel\",\"doi\":\"10.23919/CNSM.2017.8256045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in networking hardware and software-defined networking have enabled full distribution of network control to reduce control latency and increase reliability. However, both, hardware and software of current white-box networking hardware are highly heterogeneous, which limits the deployment and operation of switch-local control applications. Furthermore, switch-local control raises yet unconsidered security concerns. In this paper, we present our concept of in-forward-element processing, which leverages the open access to the control plane of white-box networking hardware to deploy control logic directly onto switches. We combine local control applications with lightweight virtualization to cope with networking hardware heterogeneity and to achieve required isolation properties and ease of management. Beyond distributed network control, we show this scheme is also beneficial for implementing switch-local virtual network functions (NFV), processing packets. Highlighting the practicability of the concepts, we provide an overview of the current white-box networking hardware and software landscape and their compatibility with lightweight virtualization technologies. To this end, we perform an empirical evaluation of NOS-virtualization combinations on such hardware and compare the results with respect to incurring virtualization overhead.\",\"PeriodicalId\":211611,\"journal\":{\"name\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM.2017.8256045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM.2017.8256045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
InFEP — Lightweight virtualization of distributed control on white-box networking hardware
Recent developments in networking hardware and software-defined networking have enabled full distribution of network control to reduce control latency and increase reliability. However, both, hardware and software of current white-box networking hardware are highly heterogeneous, which limits the deployment and operation of switch-local control applications. Furthermore, switch-local control raises yet unconsidered security concerns. In this paper, we present our concept of in-forward-element processing, which leverages the open access to the control plane of white-box networking hardware to deploy control logic directly onto switches. We combine local control applications with lightweight virtualization to cope with networking hardware heterogeneity and to achieve required isolation properties and ease of management. Beyond distributed network control, we show this scheme is also beneficial for implementing switch-local virtual network functions (NFV), processing packets. Highlighting the practicability of the concepts, we provide an overview of the current white-box networking hardware and software landscape and their compatibility with lightweight virtualization technologies. To this end, we perform an empirical evaluation of NOS-virtualization combinations on such hardware and compare the results with respect to incurring virtualization overhead.