{"title":"基于扰动一致性正则化的半监督点云实例分割","authors":"Yongbin Liao, Hongyuan Zhu, Tao Chen, Jiayuan Fan","doi":"10.1109/ICIP42928.2021.9506359","DOIUrl":null,"url":null,"abstract":"Point cloud instance segmentation is steadily improving with the development of deep learning. However, current progress is hindered by the expensive cost of collecting dense point cloud labels. To this end, we propose the first semi-supervised point cloud instance segmentation architecture, which is called semi-supervised point cloud instance segmentation with perturbation consistency regularization (SPCR). It is capable to alleviate the data-hungry bottleneck of existing strongly supervised methods. Specifically, SPCR enforces an invariance of the predictions over different perturbations applied to the input point clouds. We firstly introduce various perturbation schemes on inputs to force the network to be robust and easily generalized to the unseen and unlabeled data. Further, perturbation consistency regularization is then conducted on predicted instance masks from various transformed inputs to provide self-supervision for network learning. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the state-of-the-art of fully supervised methods.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spcr: semi-supervised point cloud instance segmentation with perturbation consistency regularization\",\"authors\":\"Yongbin Liao, Hongyuan Zhu, Tao Chen, Jiayuan Fan\",\"doi\":\"10.1109/ICIP42928.2021.9506359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud instance segmentation is steadily improving with the development of deep learning. However, current progress is hindered by the expensive cost of collecting dense point cloud labels. To this end, we propose the first semi-supervised point cloud instance segmentation architecture, which is called semi-supervised point cloud instance segmentation with perturbation consistency regularization (SPCR). It is capable to alleviate the data-hungry bottleneck of existing strongly supervised methods. Specifically, SPCR enforces an invariance of the predictions over different perturbations applied to the input point clouds. We firstly introduce various perturbation schemes on inputs to force the network to be robust and easily generalized to the unseen and unlabeled data. Further, perturbation consistency regularization is then conducted on predicted instance masks from various transformed inputs to provide self-supervision for network learning. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the state-of-the-art of fully supervised methods.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spcr: semi-supervised point cloud instance segmentation with perturbation consistency regularization
Point cloud instance segmentation is steadily improving with the development of deep learning. However, current progress is hindered by the expensive cost of collecting dense point cloud labels. To this end, we propose the first semi-supervised point cloud instance segmentation architecture, which is called semi-supervised point cloud instance segmentation with perturbation consistency regularization (SPCR). It is capable to alleviate the data-hungry bottleneck of existing strongly supervised methods. Specifically, SPCR enforces an invariance of the predictions over different perturbations applied to the input point clouds. We firstly introduce various perturbation schemes on inputs to force the network to be robust and easily generalized to the unseen and unlabeled data. Further, perturbation consistency regularization is then conducted on predicted instance masks from various transformed inputs to provide self-supervision for network learning. Extensive experiments on the challenging ScanNet v2 dataset demonstrate our method can achieve competitive performance compared with the state-of-the-art of fully supervised methods.