基于多视图特征的人体动作自动识别研究进展

S. Ashwini, Varalatchoumy
{"title":"基于多视图特征的人体动作自动识别研究进展","authors":"S. Ashwini, Varalatchoumy","doi":"10.23883/ijrter.2019.5087.evu6a","DOIUrl":null,"url":null,"abstract":"— Recognizing the human action plays a significant role in surveillance cameras. Usually cameras are situated at distant place and convey actions in form of signals at one particular place. This paper presents a framework for recognizing a sequence of actions based on multi-view video data. To depict various actions activities performed in various perspectives, view-invariant feature is being used. The features of multi-view are extracted from various temporal scales, which are demonstrated using global spatial-temporal distribution. The proposed system performs is designed to work on cross tested datasets wherein the system doesn’t require retraining for same scenario that occurs multiple times.","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Automated Human Action Recognition Using Multi view Feature\",\"authors\":\"S. Ashwini, Varalatchoumy\",\"doi\":\"10.23883/ijrter.2019.5087.evu6a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Recognizing the human action plays a significant role in surveillance cameras. Usually cameras are situated at distant place and convey actions in form of signals at one particular place. This paper presents a framework for recognizing a sequence of actions based on multi-view video data. To depict various actions activities performed in various perspectives, view-invariant feature is being used. The features of multi-view are extracted from various temporal scales, which are demonstrated using global spatial-temporal distribution. The proposed system performs is designed to work on cross tested datasets wherein the system doesn’t require retraining for same scenario that occurs multiple times.\",\"PeriodicalId\":143099,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23883/ijrter.2019.5087.evu6a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5087.evu6a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-识别人的行为在监控摄像机中起着重要作用。摄像机通常安装在较远的地方,在一个特定的地方以信号的形式传达动作。本文提出了一种基于多视点视频数据的动作序列识别框架。为了描述在不同透视图中执行的各种操作活动,使用了视图不变特性。从不同的时间尺度提取多视图特征,并利用全局时空分布对其进行论证。所提出的系统执行设计用于交叉测试的数据集,其中系统不需要对多次发生的相同场景进行重新训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Automated Human Action Recognition Using Multi view Feature
— Recognizing the human action plays a significant role in surveillance cameras. Usually cameras are situated at distant place and convey actions in form of signals at one particular place. This paper presents a framework for recognizing a sequence of actions based on multi-view video data. To depict various actions activities performed in various perspectives, view-invariant feature is being used. The features of multi-view are extracted from various temporal scales, which are demonstrated using global spatial-temporal distribution. The proposed system performs is designed to work on cross tested datasets wherein the system doesn’t require retraining for same scenario that occurs multiple times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信