用于高维数据类可视化的最佳径向布局

Tran Van Long, V. T. Ngan
{"title":"用于高维数据类可视化的最佳径向布局","authors":"Tran Van Long, V. T. Ngan","doi":"10.1109/ATC.2015.7388347","DOIUrl":null,"url":null,"abstract":"Multivariate data visualization is an interesting research field with many applications in ubiquitous fields of sciences. Radial visualization is one of the most common information visualization techniques for visualizing multivariate data. Unfortunately, Radial visualization display different information about structures of multivariate data on the different positions of dimensional anchors on the unit circle. In this paper, we propose a method that improve the Radviz layout for class visualization of high-dimensional data. We apply the differential evolution algorithm to find the optimal dimensional anchors of the RadViz such that maximum the quality of Radial visualization for classifier data. We use the k nearest neighbors classifier for quality measurement. Our method provides an improvement visualizing class structures of high-dimensional data sets on the RadViz. We demonstrate the efficiency of our method for some data sets.","PeriodicalId":142783,"journal":{"name":"2015 International Conference on Advanced Technologies for Communications (ATC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An optimal radial layout for high dimensional data class visualization\",\"authors\":\"Tran Van Long, V. T. Ngan\",\"doi\":\"10.1109/ATC.2015.7388347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate data visualization is an interesting research field with many applications in ubiquitous fields of sciences. Radial visualization is one of the most common information visualization techniques for visualizing multivariate data. Unfortunately, Radial visualization display different information about structures of multivariate data on the different positions of dimensional anchors on the unit circle. In this paper, we propose a method that improve the Radviz layout for class visualization of high-dimensional data. We apply the differential evolution algorithm to find the optimal dimensional anchors of the RadViz such that maximum the quality of Radial visualization for classifier data. We use the k nearest neighbors classifier for quality measurement. Our method provides an improvement visualizing class structures of high-dimensional data sets on the RadViz. We demonstrate the efficiency of our method for some data sets.\",\"PeriodicalId\":142783,\"journal\":{\"name\":\"2015 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC.2015.7388347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2015.7388347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多元数据可视化是一个有趣的研究领域,在普遍存在的科学领域有许多应用。径向可视化是多变量数据可视化中最常用的信息可视化技术之一。不幸的是,径向可视化在单位圆上维度锚点的不同位置上显示多元数据结构的不同信息。本文提出了一种改进Radviz布局的高维数据类可视化方法。我们应用差分进化算法来寻找RadViz的最优维度锚点,从而最大限度地提高分类器数据的径向可视化质量。我们使用k近邻分类器进行质量度量。我们的方法在RadViz上对高维数据集的类结构可视化提供了改进。我们对一些数据集证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal radial layout for high dimensional data class visualization
Multivariate data visualization is an interesting research field with many applications in ubiquitous fields of sciences. Radial visualization is one of the most common information visualization techniques for visualizing multivariate data. Unfortunately, Radial visualization display different information about structures of multivariate data on the different positions of dimensional anchors on the unit circle. In this paper, we propose a method that improve the Radviz layout for class visualization of high-dimensional data. We apply the differential evolution algorithm to find the optimal dimensional anchors of the RadViz such that maximum the quality of Radial visualization for classifier data. We use the k nearest neighbors classifier for quality measurement. Our method provides an improvement visualizing class structures of high-dimensional data sets on the RadViz. We demonstrate the efficiency of our method for some data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信