柔性可展开结构中功能梯度超弹性区界面建模

J. Jovanova, Simona Domazetovska, M. Frecker
{"title":"柔性可展开结构中功能梯度超弹性区界面建模","authors":"J. Jovanova, Simona Domazetovska, M. Frecker","doi":"10.1115/SMASIS2018-8176","DOIUrl":null,"url":null,"abstract":"Functionally graded compliant mechanisms can be fabricated with additive manufacturing technology by engineering the microstructural and compositional gradients at selected locations resulting in compositionally graded zones of higher and lower flexibility. The local compliance depends on the geometry of the structure as well as the material property in the selected region. As Nitinol (NiTi) is well suited for applications requiring compliance, the critical transformation stress and the superelastic modulus of elasticity are crucial parameters for defining the local compliance. To understand the behavior at the interface between two different material compositions, three models of gradient change between the alloys are analyzed: step change, linear and polynomial gradients. In addition to localize the deformation in the interface, three different flexure designs in the interface are analyzed. This paper will address a methodology for modeling and parametrization of material properties and transition at the interface, for different flexure designs. The combined effort in the interface of the functional grading and the geometry will be used for the design of monolithic self-deployable structures, initially folded in compact shape. The design motivation comes from the self-deploying mechanisms inspired by insects’ wings.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling of the Interface of Functionally Graded Superelastic Zones in Compliant Deployable Structures\",\"authors\":\"J. Jovanova, Simona Domazetovska, M. Frecker\",\"doi\":\"10.1115/SMASIS2018-8176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functionally graded compliant mechanisms can be fabricated with additive manufacturing technology by engineering the microstructural and compositional gradients at selected locations resulting in compositionally graded zones of higher and lower flexibility. The local compliance depends on the geometry of the structure as well as the material property in the selected region. As Nitinol (NiTi) is well suited for applications requiring compliance, the critical transformation stress and the superelastic modulus of elasticity are crucial parameters for defining the local compliance. To understand the behavior at the interface between two different material compositions, three models of gradient change between the alloys are analyzed: step change, linear and polynomial gradients. In addition to localize the deformation in the interface, three different flexure designs in the interface are analyzed. This paper will address a methodology for modeling and parametrization of material properties and transition at the interface, for different flexure designs. The combined effort in the interface of the functional grading and the geometry will be used for the design of monolithic self-deployable structures, initially folded in compact shape. The design motivation comes from the self-deploying mechanisms inspired by insects’ wings.\",\"PeriodicalId\":117187,\"journal\":{\"name\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/SMASIS2018-8176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-8176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用增材制造技术,通过在选定的位置设计微结构和成分梯度,从而产生高柔性和低柔性的成分梯度区域,可以制造出功能梯度的柔性机构。局部顺应性取决于结构的几何形状以及所选区域的材料特性。由于镍钛诺(NiTi)非常适合要求柔度的应用,因此临界转变应力和弹性超弹性模量是定义局部柔度的关键参数。为了了解两种不同材料成分之间的界面行为,分析了合金之间梯度变化的三种模型:阶跃梯度、线性梯度和多项式梯度。除了对界面变形进行局部化外,还对三种不同的界面弯曲设计进行了分析。本文将讨论一种建模和参数化材料属性和界面过渡的方法,用于不同的弯曲设计。在功能分级和几何结构界面的联合努力将用于设计整体自展开结构,最初折叠成紧凑的形状。设计灵感来源于昆虫翅膀的自我展开机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of the Interface of Functionally Graded Superelastic Zones in Compliant Deployable Structures
Functionally graded compliant mechanisms can be fabricated with additive manufacturing technology by engineering the microstructural and compositional gradients at selected locations resulting in compositionally graded zones of higher and lower flexibility. The local compliance depends on the geometry of the structure as well as the material property in the selected region. As Nitinol (NiTi) is well suited for applications requiring compliance, the critical transformation stress and the superelastic modulus of elasticity are crucial parameters for defining the local compliance. To understand the behavior at the interface between two different material compositions, three models of gradient change between the alloys are analyzed: step change, linear and polynomial gradients. In addition to localize the deformation in the interface, three different flexure designs in the interface are analyzed. This paper will address a methodology for modeling and parametrization of material properties and transition at the interface, for different flexure designs. The combined effort in the interface of the functional grading and the geometry will be used for the design of monolithic self-deployable structures, initially folded in compact shape. The design motivation comes from the self-deploying mechanisms inspired by insects’ wings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信