B. Simpkins, W. Ahn, K. Fears, J. Pietron, Adam D. Dunkelberger, J. Owrutsky
{"title":"腔体耦合的按需调制","authors":"B. Simpkins, W. Ahn, K. Fears, J. Pietron, Adam D. Dunkelberger, J. Owrutsky","doi":"10.1117/12.2593617","DOIUrl":null,"url":null,"abstract":"Materials with adaptable properties could impact optoelectronics (tunable sensors or filters) and chemical reactivity (triggered reactivity). It is widely known that strong material absorptions resonant with an optical cavity can lead to the formation of new hybrid light-matter states called polaritons. Strikingly, cavity-modified material properties (e.g., electrical conductivity, optical emission/absorption, chemical reaction rates and branching ratios) have been demonstrated and, the degree to which they are modified, shown to depend on the energy positions of these new hybrid states. Our work shows real-time tuning of these states through electrochemical cycling and optical excitation of the coupled species.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-demand modulation of cavity coupling\",\"authors\":\"B. Simpkins, W. Ahn, K. Fears, J. Pietron, Adam D. Dunkelberger, J. Owrutsky\",\"doi\":\"10.1117/12.2593617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials with adaptable properties could impact optoelectronics (tunable sensors or filters) and chemical reactivity (triggered reactivity). It is widely known that strong material absorptions resonant with an optical cavity can lead to the formation of new hybrid light-matter states called polaritons. Strikingly, cavity-modified material properties (e.g., electrical conductivity, optical emission/absorption, chemical reaction rates and branching ratios) have been demonstrated and, the degree to which they are modified, shown to depend on the energy positions of these new hybrid states. Our work shows real-time tuning of these states through electrochemical cycling and optical excitation of the coupled species.\",\"PeriodicalId\":389503,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Materials with adaptable properties could impact optoelectronics (tunable sensors or filters) and chemical reactivity (triggered reactivity). It is widely known that strong material absorptions resonant with an optical cavity can lead to the formation of new hybrid light-matter states called polaritons. Strikingly, cavity-modified material properties (e.g., electrical conductivity, optical emission/absorption, chemical reaction rates and branching ratios) have been demonstrated and, the degree to which they are modified, shown to depend on the energy positions of these new hybrid states. Our work shows real-time tuning of these states through electrochemical cycling and optical excitation of the coupled species.