基于矩阵铅笔的多路径配对方法

Xiaolong Yang, Quanchen Li, Qi Li, Mu Zhou, Yong Wang, Wei Nie
{"title":"基于矩阵铅笔的多路径配对方法","authors":"Xiaolong Yang, Quanchen Li, Qi Li, Mu Zhou, Yong Wang, Wei Nie","doi":"10.1109/APCAP56600.2022.10069949","DOIUrl":null,"url":null,"abstract":"In this paper, an improved pairing method is proposed to solve the multi-pole problem in the parameter estimation of matrix pencil (MP) algorithm and its derivatives in a multipath environment. This method distinguishes eigenvalues obtained by decomposing the spatial dimension matrix, further constructs eigenvalues of the time dimension, and finally updates eigenvalues. Simulation results show that the MP algorithm based on this method avoids the failed pairing caused by the multiplicity of eigenvalues and achieves more accurate parameter estimation.","PeriodicalId":197691,"journal":{"name":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multipath Pairing Method Based on Matrix Pencil\",\"authors\":\"Xiaolong Yang, Quanchen Li, Qi Li, Mu Zhou, Yong Wang, Wei Nie\",\"doi\":\"10.1109/APCAP56600.2022.10069949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved pairing method is proposed to solve the multi-pole problem in the parameter estimation of matrix pencil (MP) algorithm and its derivatives in a multipath environment. This method distinguishes eigenvalues obtained by decomposing the spatial dimension matrix, further constructs eigenvalues of the time dimension, and finally updates eigenvalues. Simulation results show that the MP algorithm based on this method avoids the failed pairing caused by the multiplicity of eigenvalues and achieves more accurate parameter estimation.\",\"PeriodicalId\":197691,\"journal\":{\"name\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAP56600.2022.10069949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAP56600.2022.10069949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的配对方法,用于解决多路径环境下矩阵铅笔(MP)算法及其导数参数估计中的多极问题。该方法对空间维矩阵分解得到的特征值进行区分,进一步构造时间维特征值,最后更新特征值。仿真结果表明,基于该方法的MP算法避免了特征值多重导致的配对失败,实现了更准确的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multipath Pairing Method Based on Matrix Pencil
In this paper, an improved pairing method is proposed to solve the multi-pole problem in the parameter estimation of matrix pencil (MP) algorithm and its derivatives in a multipath environment. This method distinguishes eigenvalues obtained by decomposing the spatial dimension matrix, further constructs eigenvalues of the time dimension, and finally updates eigenvalues. Simulation results show that the MP algorithm based on this method avoids the failed pairing caused by the multiplicity of eigenvalues and achieves more accurate parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信