基于脑电图的深度神经网络癫痫发作自动检测

J. Birjandtalab, M. Heydarzadeh, M. Nourani
{"title":"基于脑电图的深度神经网络癫痫发作自动检测","authors":"J. Birjandtalab, M. Heydarzadeh, M. Nourani","doi":"10.1109/ICHI.2017.55","DOIUrl":null,"url":null,"abstract":"Millions of people around the world suffer from epilepsy. It is very important to provide a method to efficiently monitor the seizures and alert the caregivers to help patients. It is proven that EEG signals are the best markers for diagnosis of the epileptic seizures. In this paper, we used the frequency domain features (normalized in-band power spectral density) to extract information from EEG signals. We applied a deep learning technique based on multilayer perceptrons to improve the accuracy of seizure detection. The results indicate that our nonlinear technique is able to efficiently and automatically detect seizure and non-seizure episodes with an F-measure accuracy of around 95%.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Automated EEG-Based Epileptic Seizure Detection Using Deep Neural Networks\",\"authors\":\"J. Birjandtalab, M. Heydarzadeh, M. Nourani\",\"doi\":\"10.1109/ICHI.2017.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millions of people around the world suffer from epilepsy. It is very important to provide a method to efficiently monitor the seizures and alert the caregivers to help patients. It is proven that EEG signals are the best markers for diagnosis of the epileptic seizures. In this paper, we used the frequency domain features (normalized in-band power spectral density) to extract information from EEG signals. We applied a deep learning technique based on multilayer perceptrons to improve the accuracy of seizure detection. The results indicate that our nonlinear technique is able to efficiently and automatically detect seizure and non-seizure episodes with an F-measure accuracy of around 95%.\",\"PeriodicalId\":263611,\"journal\":{\"name\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHI.2017.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

全世界有数百万人患有癫痫。提供一种有效监测癫痫发作的方法并提醒护理人员帮助患者是非常重要的。结果表明,脑电图信号是诊断癫痫发作的最佳标志。本文利用频域特征(归一化带内功率谱密度)对脑电信号进行信息提取。我们采用了一种基于多层感知器的深度学习技术来提高癫痫检测的准确性。结果表明,我们的非线性技术能够有效、自动地检测癫痫发作和非癫痫发作,f测量精度约为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated EEG-Based Epileptic Seizure Detection Using Deep Neural Networks
Millions of people around the world suffer from epilepsy. It is very important to provide a method to efficiently monitor the seizures and alert the caregivers to help patients. It is proven that EEG signals are the best markers for diagnosis of the epileptic seizures. In this paper, we used the frequency domain features (normalized in-band power spectral density) to extract information from EEG signals. We applied a deep learning technique based on multilayer perceptrons to improve the accuracy of seizure detection. The results indicate that our nonlinear technique is able to efficiently and automatically detect seizure and non-seizure episodes with an F-measure accuracy of around 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信