Faiza Sajjad, Muhammad Ihtisham Babar, Muneeb Ahsan
{"title":"鸭翼位置和二面体变化对紧密耦合翼-鸭翼结构升力特性的影响研究","authors":"Faiza Sajjad, Muhammad Ihtisham Babar, Muneeb Ahsan","doi":"10.1109/ICASE54940.2021.9904264","DOIUrl":null,"url":null,"abstract":"In this article, a higher-order panel code is used to study the effects of the vertical and horizontal location of the canard as well as its dihedral on the lift of a closely-coupled wing-canard configuration. PanAir is a higher-order potential code which solves Prandtl-Glauert equation in subsonic and supersonic regimes by distributing source and doublet singularities over a finite number of panels of a geometry. The available panel code is the pilot version of PanAir, which is capable of evaluating aerodynamic coefficients for complex geometries. Being a potential flow code, PanAir does not take into account the viscous aspect of the flow but gives quick and reasonable results for arbitrary configurations. To investigate the effect of location of canard, three horizontal and vertical positions are considered based on the maximum thickness of canard. Later, the effect of dihedral is studied using one value of canard dihedral and a corresponding value of anhedral. It is concluded that the addition of a canard in plane of the wing decreases the lift while moving it towards the wing increases the lift. Shifting the canard above the wing plane also adds to the lift of the aircraft. The effect of dihedral and anhedral on lift is highly dependent on the vertical and horizontal location of canard.","PeriodicalId":300328,"journal":{"name":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PanAir Study of Variation in Canard Location and Dihedral on Lift Characteristics of a Close-Coupled Wing-Canard Configuration\",\"authors\":\"Faiza Sajjad, Muhammad Ihtisham Babar, Muneeb Ahsan\",\"doi\":\"10.1109/ICASE54940.2021.9904264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a higher-order panel code is used to study the effects of the vertical and horizontal location of the canard as well as its dihedral on the lift of a closely-coupled wing-canard configuration. PanAir is a higher-order potential code which solves Prandtl-Glauert equation in subsonic and supersonic regimes by distributing source and doublet singularities over a finite number of panels of a geometry. The available panel code is the pilot version of PanAir, which is capable of evaluating aerodynamic coefficients for complex geometries. Being a potential flow code, PanAir does not take into account the viscous aspect of the flow but gives quick and reasonable results for arbitrary configurations. To investigate the effect of location of canard, three horizontal and vertical positions are considered based on the maximum thickness of canard. Later, the effect of dihedral is studied using one value of canard dihedral and a corresponding value of anhedral. It is concluded that the addition of a canard in plane of the wing decreases the lift while moving it towards the wing increases the lift. Shifting the canard above the wing plane also adds to the lift of the aircraft. The effect of dihedral and anhedral on lift is highly dependent on the vertical and horizontal location of canard.\",\"PeriodicalId\":300328,\"journal\":{\"name\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASE54940.2021.9904264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh International Conference on Aerospace Science and Engineering (ICASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASE54940.2021.9904264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PanAir Study of Variation in Canard Location and Dihedral on Lift Characteristics of a Close-Coupled Wing-Canard Configuration
In this article, a higher-order panel code is used to study the effects of the vertical and horizontal location of the canard as well as its dihedral on the lift of a closely-coupled wing-canard configuration. PanAir is a higher-order potential code which solves Prandtl-Glauert equation in subsonic and supersonic regimes by distributing source and doublet singularities over a finite number of panels of a geometry. The available panel code is the pilot version of PanAir, which is capable of evaluating aerodynamic coefficients for complex geometries. Being a potential flow code, PanAir does not take into account the viscous aspect of the flow but gives quick and reasonable results for arbitrary configurations. To investigate the effect of location of canard, three horizontal and vertical positions are considered based on the maximum thickness of canard. Later, the effect of dihedral is studied using one value of canard dihedral and a corresponding value of anhedral. It is concluded that the addition of a canard in plane of the wing decreases the lift while moving it towards the wing increases the lift. Shifting the canard above the wing plane also adds to the lift of the aircraft. The effect of dihedral and anhedral on lift is highly dependent on the vertical and horizontal location of canard.