{"title":"射流涡流节流装置的数值与实验研究","authors":"A. Utkin, A. Gimadiev","doi":"10.1109/GFPS.2018.8472384","DOIUrl":null,"url":null,"abstract":"The use of a vortex-throttling device to reduce the pressure of fluid flow is a promising area, since these devices have a high hydraulic resistance coefficient at a large flow area and have high reliability due to the absence of moving parts. The purpose of this paper is conduct experimental and theoretical studies of the hydraulic characteristics of vortex throttle and a package of vortex throttles, taking into account the effect of backpressure and the mutual arrangement of the throttles in the package.1 Pressure, velocity and other parameter distribution fields in the flow part of the vortex throttle were obtained by means of CFD simulation in the Ansys CFX software. The main pressure drop occurs on the throttling orifice, in which, with significant pressure drop, a cavitations effect occurs. The ratio of the Euler numbers for reverse (with a swirling flow) to direct (without a swirling flow) connections of the throttle is 5.3, which allows it to be also used as a fluidic diode. To obtain a high hydraulic resistance, a series connection of the vortex throttles to the package is used. The study was conducted for a package of three and four vortex throttles at Reynolds numbers $10 ^{3}\\ldots 26\\cdot 10 ^{3}$ and pressure drop of up to 10 MPa. The obtained results show that the backpressure value and the distance between throttles have a negligible effect on the package pressure drop. It is established that on each of the successively installed vortex throttles an equal pressure drop is realized within an error of 3%. The calculated data correlates well with the experimental point, which confirms the adequacy of the developed mathematical model. The obtained results allow calculating the parameters of the pressure reduction devices based on the vortex throttles. The material is of interest to design organizations involved in developing sample conditioning systems and throttling devices for large pressure drops.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Study of the Fluidic Vortex-throttling Device\",\"authors\":\"A. Utkin, A. Gimadiev\",\"doi\":\"10.1109/GFPS.2018.8472384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a vortex-throttling device to reduce the pressure of fluid flow is a promising area, since these devices have a high hydraulic resistance coefficient at a large flow area and have high reliability due to the absence of moving parts. The purpose of this paper is conduct experimental and theoretical studies of the hydraulic characteristics of vortex throttle and a package of vortex throttles, taking into account the effect of backpressure and the mutual arrangement of the throttles in the package.1 Pressure, velocity and other parameter distribution fields in the flow part of the vortex throttle were obtained by means of CFD simulation in the Ansys CFX software. The main pressure drop occurs on the throttling orifice, in which, with significant pressure drop, a cavitations effect occurs. The ratio of the Euler numbers for reverse (with a swirling flow) to direct (without a swirling flow) connections of the throttle is 5.3, which allows it to be also used as a fluidic diode. To obtain a high hydraulic resistance, a series connection of the vortex throttles to the package is used. The study was conducted for a package of three and four vortex throttles at Reynolds numbers $10 ^{3}\\\\ldots 26\\\\cdot 10 ^{3}$ and pressure drop of up to 10 MPa. The obtained results show that the backpressure value and the distance between throttles have a negligible effect on the package pressure drop. It is established that on each of the successively installed vortex throttles an equal pressure drop is realized within an error of 3%. The calculated data correlates well with the experimental point, which confirms the adequacy of the developed mathematical model. The obtained results allow calculating the parameters of the pressure reduction devices based on the vortex throttles. The material is of interest to design organizations involved in developing sample conditioning systems and throttling devices for large pressure drops.\",\"PeriodicalId\":273799,\"journal\":{\"name\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFPS.2018.8472384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical and Experimental Study of the Fluidic Vortex-throttling Device
The use of a vortex-throttling device to reduce the pressure of fluid flow is a promising area, since these devices have a high hydraulic resistance coefficient at a large flow area and have high reliability due to the absence of moving parts. The purpose of this paper is conduct experimental and theoretical studies of the hydraulic characteristics of vortex throttle and a package of vortex throttles, taking into account the effect of backpressure and the mutual arrangement of the throttles in the package.1 Pressure, velocity and other parameter distribution fields in the flow part of the vortex throttle were obtained by means of CFD simulation in the Ansys CFX software. The main pressure drop occurs on the throttling orifice, in which, with significant pressure drop, a cavitations effect occurs. The ratio of the Euler numbers for reverse (with a swirling flow) to direct (without a swirling flow) connections of the throttle is 5.3, which allows it to be also used as a fluidic diode. To obtain a high hydraulic resistance, a series connection of the vortex throttles to the package is used. The study was conducted for a package of three and four vortex throttles at Reynolds numbers $10 ^{3}\ldots 26\cdot 10 ^{3}$ and pressure drop of up to 10 MPa. The obtained results show that the backpressure value and the distance between throttles have a negligible effect on the package pressure drop. It is established that on each of the successively installed vortex throttles an equal pressure drop is realized within an error of 3%. The calculated data correlates well with the experimental point, which confirms the adequacy of the developed mathematical model. The obtained results allow calculating the parameters of the pressure reduction devices based on the vortex throttles. The material is of interest to design organizations involved in developing sample conditioning systems and throttling devices for large pressure drops.