无线网络优化设计的随机学习算法

Alejandro Ribeiro
{"title":"无线网络优化设计的随机学习算法","authors":"Alejandro Ribeiro","doi":"10.1109/SPAWC.2010.5671073","DOIUrl":null,"url":null,"abstract":"We introduce algorithms to optimize wireless networks in the presence of fading. Central to the problem considered is the need to learn the fading's probability distribution while determining optimal operating points. A stochastic subgradient descent algorithm in the dual domain is developed to accomplish this task. Even though the optimization problems considered are not convex, convergence of the proposed algorithms is claimed. Numerical results using adaptive modulation over an interference limited physical layer corroborate theoretical results.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic learning algorithms for optimal design of wireless networks\",\"authors\":\"Alejandro Ribeiro\",\"doi\":\"10.1109/SPAWC.2010.5671073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce algorithms to optimize wireless networks in the presence of fading. Central to the problem considered is the need to learn the fading's probability distribution while determining optimal operating points. A stochastic subgradient descent algorithm in the dual domain is developed to accomplish this task. Even though the optimization problems considered are not convex, convergence of the proposed algorithms is claimed. Numerical results using adaptive modulation over an interference limited physical layer corroborate theoretical results.\",\"PeriodicalId\":436215,\"journal\":{\"name\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2010.5671073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5671073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了在存在衰落的情况下优化无线网络的算法。该问题的核心是在确定最佳工作点时需要了解衰落的概率分布。为此,提出了一种对偶域的随机次梯度下降算法。尽管所考虑的优化问题不是凸的,但所提出的算法具有收敛性。在干扰受限的物理层上采用自适应调制的数值结果证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic learning algorithms for optimal design of wireless networks
We introduce algorithms to optimize wireless networks in the presence of fading. Central to the problem considered is the need to learn the fading's probability distribution while determining optimal operating points. A stochastic subgradient descent algorithm in the dual domain is developed to accomplish this task. Even though the optimization problems considered are not convex, convergence of the proposed algorithms is claimed. Numerical results using adaptive modulation over an interference limited physical layer corroborate theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信