{"title":"运动物体的运动补偿x射线CT算法","authors":"Takumi Tanaka, S. Maeda, S. Ishii","doi":"10.1109/ICMLA.2011.97","DOIUrl":null,"url":null,"abstract":"In this study a motion compensated X-ray CT algorithm based on a statistical model is proposed. The important feature of our motion compensated X-ray CT algorithm is that the target object is assumed to move or deform along the time. Then the projections of the deforming target object are described by a state-space model. The deformation is described by motion vectors each attached to each pixel. To reduce the ill-posed ness we incorporate into the prior distribution our a priori knowledge that the target object is composed of a restricted number of materials whose X-ray absorption coefficients are roughly known. To perform Bayesian inference based on our statistical model, the posterior distribution is approximated by a computationally tractable distribution such to minimize Kullback-Leibler (KL) divergence between the posterior and the tractable distributions. Computer simulations using phantom images show the effectiveness of our CT algorithm, suggesting the state-space model works even when the target object is deforming.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Compensated X-ray CT Algorithm for Moving Objects\",\"authors\":\"Takumi Tanaka, S. Maeda, S. Ishii\",\"doi\":\"10.1109/ICMLA.2011.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study a motion compensated X-ray CT algorithm based on a statistical model is proposed. The important feature of our motion compensated X-ray CT algorithm is that the target object is assumed to move or deform along the time. Then the projections of the deforming target object are described by a state-space model. The deformation is described by motion vectors each attached to each pixel. To reduce the ill-posed ness we incorporate into the prior distribution our a priori knowledge that the target object is composed of a restricted number of materials whose X-ray absorption coefficients are roughly known. To perform Bayesian inference based on our statistical model, the posterior distribution is approximated by a computationally tractable distribution such to minimize Kullback-Leibler (KL) divergence between the posterior and the tractable distributions. Computer simulations using phantom images show the effectiveness of our CT algorithm, suggesting the state-space model works even when the target object is deforming.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion Compensated X-ray CT Algorithm for Moving Objects
In this study a motion compensated X-ray CT algorithm based on a statistical model is proposed. The important feature of our motion compensated X-ray CT algorithm is that the target object is assumed to move or deform along the time. Then the projections of the deforming target object are described by a state-space model. The deformation is described by motion vectors each attached to each pixel. To reduce the ill-posed ness we incorporate into the prior distribution our a priori knowledge that the target object is composed of a restricted number of materials whose X-ray absorption coefficients are roughly known. To perform Bayesian inference based on our statistical model, the posterior distribution is approximated by a computationally tractable distribution such to minimize Kullback-Leibler (KL) divergence between the posterior and the tractable distributions. Computer simulations using phantom images show the effectiveness of our CT algorithm, suggesting the state-space model works even when the target object is deforming.