{"title":"电动汽车V2G无线充电器效率的理论分析","authors":"A. Triviño, J. González-González, J. Aguado","doi":"10.22149/TEEE.V3I1.118","DOIUrl":null,"url":null,"abstract":"V2G (Vehicle-to-grid) technology will report important benefits for the operation and safety of the grid. In order to facilitate the expansion of the V2G technology in a future, it is recommended to offer the drivers with easy to use methods to charge and discharge their EV batteries. In this sense, wireless chargers are expected to play a relevant role in the future electrical networks as it reduces the users intervention. The development of this kind of system is still open to improve them in terms of their operation, their compliance and their control. An important issue for the evaluation of these systems is the efficiency, which measures the power losses occurring in the system. This paper addresses a deep study about the losses in a bidirectional wireless charger. Then, it provides with a mathematical model to characterize them. This model is validated by means of experimental results conducted in a 3.7-kW prototype.","PeriodicalId":228697,"journal":{"name":"Transactions on Environment and Electrical Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical analysis of the efficiency of a V2G wireless charger for Electric Vehicles\",\"authors\":\"A. Triviño, J. González-González, J. Aguado\",\"doi\":\"10.22149/TEEE.V3I1.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"V2G (Vehicle-to-grid) technology will report important benefits for the operation and safety of the grid. In order to facilitate the expansion of the V2G technology in a future, it is recommended to offer the drivers with easy to use methods to charge and discharge their EV batteries. In this sense, wireless chargers are expected to play a relevant role in the future electrical networks as it reduces the users intervention. The development of this kind of system is still open to improve them in terms of their operation, their compliance and their control. An important issue for the evaluation of these systems is the efficiency, which measures the power losses occurring in the system. This paper addresses a deep study about the losses in a bidirectional wireless charger. Then, it provides with a mathematical model to characterize them. This model is validated by means of experimental results conducted in a 3.7-kW prototype.\",\"PeriodicalId\":228697,\"journal\":{\"name\":\"Transactions on Environment and Electrical Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Environment and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22149/TEEE.V3I1.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Environment and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22149/TEEE.V3I1.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical analysis of the efficiency of a V2G wireless charger for Electric Vehicles
V2G (Vehicle-to-grid) technology will report important benefits for the operation and safety of the grid. In order to facilitate the expansion of the V2G technology in a future, it is recommended to offer the drivers with easy to use methods to charge and discharge their EV batteries. In this sense, wireless chargers are expected to play a relevant role in the future electrical networks as it reduces the users intervention. The development of this kind of system is still open to improve them in terms of their operation, their compliance and their control. An important issue for the evaluation of these systems is the efficiency, which measures the power losses occurring in the system. This paper addresses a deep study about the losses in a bidirectional wireless charger. Then, it provides with a mathematical model to characterize them. This model is validated by means of experimental results conducted in a 3.7-kW prototype.