{"title":"基于混合服务排名的云Web服务数据协同过滤模型","authors":"Suvarna S. Pawar, Y. Prasanth","doi":"10.4108/eai.26-10-2021.171599","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: Trust is an important indicator in the cloud computing environment for service selection and recommendation. It is a difficult task to create a composite value-added service from several candidate services for the desired objectives due to the dramatic growth in services that have similar functionalities. OBJECTIVES: This research aims to design a hybrid service feature ranking; cloud service ranking are computed using the advanced contextual service ranking measures. A hybrid collaborative approach is totally based on confidence to the QoS web service prediction. METHODS: A new service ranking similarity computation is optimized for the cloud-based service selection. This collaborative filtering measure is used to check the top k customer selection by performing the top-k customer selection estimation on the cloud service ranking RESULTS: The proposed method is useful in the prediction of QoS values and helps with optimal service ranking. As a result, similar/ relating cloud services are increasing, making it extremely complex to select the best cloud service among the relevant / similar services available CONCLUSION: The state-of the-art approaches are proposed and tested on a mathematical QoS-Aware assessment framework. The use of semantic matching technique and QoS for web service ranking satisfies user requirements for web service recommendations. In addition, users require a web service not only based on functionality, but also based on high quality.","PeriodicalId":109199,"journal":{"name":"EAI Endorsed Transactions on Collaborative Computing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Service Ranking Based Collaborative Filtering Model on Cloud Web Service Data\",\"authors\":\"Suvarna S. Pawar, Y. Prasanth\",\"doi\":\"10.4108/eai.26-10-2021.171599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION: Trust is an important indicator in the cloud computing environment for service selection and recommendation. It is a difficult task to create a composite value-added service from several candidate services for the desired objectives due to the dramatic growth in services that have similar functionalities. OBJECTIVES: This research aims to design a hybrid service feature ranking; cloud service ranking are computed using the advanced contextual service ranking measures. A hybrid collaborative approach is totally based on confidence to the QoS web service prediction. METHODS: A new service ranking similarity computation is optimized for the cloud-based service selection. This collaborative filtering measure is used to check the top k customer selection by performing the top-k customer selection estimation on the cloud service ranking RESULTS: The proposed method is useful in the prediction of QoS values and helps with optimal service ranking. As a result, similar/ relating cloud services are increasing, making it extremely complex to select the best cloud service among the relevant / similar services available CONCLUSION: The state-of the-art approaches are proposed and tested on a mathematical QoS-Aware assessment framework. The use of semantic matching technique and QoS for web service ranking satisfies user requirements for web service recommendations. In addition, users require a web service not only based on functionality, but also based on high quality.\",\"PeriodicalId\":109199,\"journal\":{\"name\":\"EAI Endorsed Transactions on Collaborative Computing\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Collaborative Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.26-10-2021.171599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Collaborative Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.26-10-2021.171599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Service Ranking Based Collaborative Filtering Model on Cloud Web Service Data
INTRODUCTION: Trust is an important indicator in the cloud computing environment for service selection and recommendation. It is a difficult task to create a composite value-added service from several candidate services for the desired objectives due to the dramatic growth in services that have similar functionalities. OBJECTIVES: This research aims to design a hybrid service feature ranking; cloud service ranking are computed using the advanced contextual service ranking measures. A hybrid collaborative approach is totally based on confidence to the QoS web service prediction. METHODS: A new service ranking similarity computation is optimized for the cloud-based service selection. This collaborative filtering measure is used to check the top k customer selection by performing the top-k customer selection estimation on the cloud service ranking RESULTS: The proposed method is useful in the prediction of QoS values and helps with optimal service ranking. As a result, similar/ relating cloud services are increasing, making it extremely complex to select the best cloud service among the relevant / similar services available CONCLUSION: The state-of the-art approaches are proposed and tested on a mathematical QoS-Aware assessment framework. The use of semantic matching technique and QoS for web service ranking satisfies user requirements for web service recommendations. In addition, users require a web service not only based on functionality, but also based on high quality.