基于多核学习的脑肿瘤分割特征选择与分类

Naouel Boughattas, Maxime Bérar, K. Hamrouni, S. Ruan
{"title":"基于多核学习的脑肿瘤分割特征选择与分类","authors":"Naouel Boughattas, Maxime Bérar, K. Hamrouni, S. Ruan","doi":"10.1109/ATSIP.2018.8364470","DOIUrl":null,"url":null,"abstract":"We propose a brain tumor segmentation method from multi-sequence images. The method selects the most relevant features and segments edema and tumor using a classification algorithm based on Multiple Kernel Learning (MKL). Using MKL algorithm, we can associate one or more kernels to each feature. Each kernel is associated to a weight reflecting its importance in the classification. A sparsity constraint on the kernel weights allows to force same weights to be equal to zero corresponding to insignificant kernels (non informative features). Our method was evaluated on real patient dataset of the MICCAI 2012 BraTS challenge. The results show that our method is competitive to the winning methods.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Feature selection and classification using multiple kernel learning for brain tumor segmentation\",\"authors\":\"Naouel Boughattas, Maxime Bérar, K. Hamrouni, S. Ruan\",\"doi\":\"10.1109/ATSIP.2018.8364470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a brain tumor segmentation method from multi-sequence images. The method selects the most relevant features and segments edema and tumor using a classification algorithm based on Multiple Kernel Learning (MKL). Using MKL algorithm, we can associate one or more kernels to each feature. Each kernel is associated to a weight reflecting its importance in the classification. A sparsity constraint on the kernel weights allows to force same weights to be equal to zero corresponding to insignificant kernels (non informative features). Our method was evaluated on real patient dataset of the MICCAI 2012 BraTS challenge. The results show that our method is competitive to the winning methods.\",\"PeriodicalId\":332253,\"journal\":{\"name\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2018.8364470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于多序列图像的脑肿瘤分割方法。该方法使用基于多核学习(Multiple Kernel Learning, MKL)的分类算法,选择最相关的特征并分割水肿和肿瘤。使用MKL算法,我们可以将一个或多个核与每个特征关联起来。每个核都与一个权重相关联,反映了它在分类中的重要性。对核权值的稀疏性约束允许强制相同的权值等于零,对应于不重要的核(非信息特征)。我们的方法在MICCAI 2012 BraTS挑战赛的真实患者数据集上进行了评估。结果表明,该方法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection and classification using multiple kernel learning for brain tumor segmentation
We propose a brain tumor segmentation method from multi-sequence images. The method selects the most relevant features and segments edema and tumor using a classification algorithm based on Multiple Kernel Learning (MKL). Using MKL algorithm, we can associate one or more kernels to each feature. Each kernel is associated to a weight reflecting its importance in the classification. A sparsity constraint on the kernel weights allows to force same weights to be equal to zero corresponding to insignificant kernels (non informative features). Our method was evaluated on real patient dataset of the MICCAI 2012 BraTS challenge. The results show that our method is competitive to the winning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信