{"title":"基于词语义的三维卷积神经网络新闻推荐","authors":"Vaibhav Kumar, Dhruv Khattar, Shashank Gupta, Vasudeva Varma","doi":"10.1109/ICDMW.2017.105","DOIUrl":null,"url":null,"abstract":"Deep neural networks have yielded immense success in speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks for content based recommendation has received a relatively less amount of inspection. Also, different recommendation scenarios have their own issues which creates the need for different approaches for recommendation. One of the problems with news recommendation is that of handling temporal changes in user interests. Hence, modelling temporal behaviour in the domain of news recommendation becomes very important. In this work, we propose a recommendation model which uses semantic similarity between words as input to a 3-D Convolutional Neural Network in order to extract the temporal news reading pattern of the users. This in turn improves the quality of recommendations. We compare our model to a set of established baselines and the experimental results show that our model performs better than the state-of-the-art by 5.8% (Hit Ratio@10).","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Word Semantics Based 3-D Convolutional Neural Networks for News Recommendation\",\"authors\":\"Vaibhav Kumar, Dhruv Khattar, Shashank Gupta, Vasudeva Varma\",\"doi\":\"10.1109/ICDMW.2017.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks have yielded immense success in speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks for content based recommendation has received a relatively less amount of inspection. Also, different recommendation scenarios have their own issues which creates the need for different approaches for recommendation. One of the problems with news recommendation is that of handling temporal changes in user interests. Hence, modelling temporal behaviour in the domain of news recommendation becomes very important. In this work, we propose a recommendation model which uses semantic similarity between words as input to a 3-D Convolutional Neural Network in order to extract the temporal news reading pattern of the users. This in turn improves the quality of recommendations. We compare our model to a set of established baselines and the experimental results show that our model performs better than the state-of-the-art by 5.8% (Hit Ratio@10).\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Word Semantics Based 3-D Convolutional Neural Networks for News Recommendation
Deep neural networks have yielded immense success in speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks for content based recommendation has received a relatively less amount of inspection. Also, different recommendation scenarios have their own issues which creates the need for different approaches for recommendation. One of the problems with news recommendation is that of handling temporal changes in user interests. Hence, modelling temporal behaviour in the domain of news recommendation becomes very important. In this work, we propose a recommendation model which uses semantic similarity between words as input to a 3-D Convolutional Neural Network in order to extract the temporal news reading pattern of the users. This in turn improves the quality of recommendations. We compare our model to a set of established baselines and the experimental results show that our model performs better than the state-of-the-art by 5.8% (Hit Ratio@10).