用最优颜色表示多元数据以揭示时间序列数据中感兴趣的事件

Ding-Bang Chen, Chien-Hsun Lai, Yun-Hsuan Lien, Yu-Hsuan Lin, Yu-Shuen Wang, K. Ma
{"title":"用最优颜色表示多元数据以揭示时间序列数据中感兴趣的事件","authors":"Ding-Bang Chen, Chien-Hsun Lai, Yun-Hsuan Lien, Yu-Hsuan Lin, Yu-Shuen Wang, K. Ma","doi":"10.1109/PacificVis48177.2020.9915","DOIUrl":null,"url":null,"abstract":"In this paper, we present a visualization system for users to study multivariate time series data. They first identify trends or anomalies from a global view and then examine details in a local view. Specifically, we train a neural network to project high-dimensional data to a two dimensional (2D) planar space while retaining global data distances. By aligning the 2D points with a predefined color map, high-dimensional data can be represented by colors. Because perceptual color differentiation may fail to reflect data distance, we optimize perceptual color differentiation on each map region by deformation. The region with large perceptual color differentiation will expand, whereas the region with small differentiation will shrink. Since colors do not occupy any space in visualization, we convey the overview of multivariate time series data by a calendar view. Cells in the view are color-coded to represent multivariate data at different time spans. Users can observe color changes over time to identify events of interest. Afterward, they study details of an event by examining parallel coordinate plots. Cells in the calendar view and the parallel coordinate plots are dynamically linked for users to obtain insights that are barely noticeable in large datasets. The experiment results, comparisons, conducted case studies, and the user study indicate that our visualization system is feasible and effective.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Representing Multivariate Data by Optimal Colors to Uncover Events of Interest in Time Series Data\",\"authors\":\"Ding-Bang Chen, Chien-Hsun Lai, Yun-Hsuan Lien, Yu-Hsuan Lin, Yu-Shuen Wang, K. Ma\",\"doi\":\"10.1109/PacificVis48177.2020.9915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a visualization system for users to study multivariate time series data. They first identify trends or anomalies from a global view and then examine details in a local view. Specifically, we train a neural network to project high-dimensional data to a two dimensional (2D) planar space while retaining global data distances. By aligning the 2D points with a predefined color map, high-dimensional data can be represented by colors. Because perceptual color differentiation may fail to reflect data distance, we optimize perceptual color differentiation on each map region by deformation. The region with large perceptual color differentiation will expand, whereas the region with small differentiation will shrink. Since colors do not occupy any space in visualization, we convey the overview of multivariate time series data by a calendar view. Cells in the view are color-coded to represent multivariate data at different time spans. Users can observe color changes over time to identify events of interest. Afterward, they study details of an event by examining parallel coordinate plots. Cells in the calendar view and the parallel coordinate plots are dynamically linked for users to obtain insights that are barely noticeable in large datasets. The experiment results, comparisons, conducted case studies, and the user study indicate that our visualization system is feasible and effective.\",\"PeriodicalId\":322092,\"journal\":{\"name\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis48177.2020.9915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.9915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一个可视化系统,供用户研究多元时间序列数据。他们首先从全局视图确定趋势或异常,然后在局部视图中检查细节。具体来说,我们训练神经网络将高维数据投影到二维(2D)平面空间,同时保留全局数据距离。通过将2D点与预定义的颜色映射对齐,高维数据可以用颜色表示。由于感知颜色区分可能无法反映数据距离,我们通过变形优化每个地图区域的感知颜色区分。感知色彩差异大的区域会扩大,而感知色彩差异小的区域会缩小。由于颜色在可视化中不占用任何空间,因此我们通过日历视图来传达多元时间序列数据的概述。视图中的单元格用颜色编码,以表示不同时间跨度的多变量数据。用户可以观察颜色随时间的变化来识别感兴趣的事件。之后,他们通过检查平行坐标图来研究事件的细节。日历视图中的单元格和平行坐标图动态链接,以便用户获得在大型数据集中几乎不引人注意的见解。实验结果、对比、案例分析和用户研究表明,该可视化系统是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representing Multivariate Data by Optimal Colors to Uncover Events of Interest in Time Series Data
In this paper, we present a visualization system for users to study multivariate time series data. They first identify trends or anomalies from a global view and then examine details in a local view. Specifically, we train a neural network to project high-dimensional data to a two dimensional (2D) planar space while retaining global data distances. By aligning the 2D points with a predefined color map, high-dimensional data can be represented by colors. Because perceptual color differentiation may fail to reflect data distance, we optimize perceptual color differentiation on each map region by deformation. The region with large perceptual color differentiation will expand, whereas the region with small differentiation will shrink. Since colors do not occupy any space in visualization, we convey the overview of multivariate time series data by a calendar view. Cells in the view are color-coded to represent multivariate data at different time spans. Users can observe color changes over time to identify events of interest. Afterward, they study details of an event by examining parallel coordinate plots. Cells in the calendar view and the parallel coordinate plots are dynamically linked for users to obtain insights that are barely noticeable in large datasets. The experiment results, comparisons, conducted case studies, and the user study indicate that our visualization system is feasible and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信