使用可视数据的自动标志分类

Marek Hruúz
{"title":"使用可视数据的自动标志分类","authors":"Marek Hruúz","doi":"10.1145/2049536.2049581","DOIUrl":null,"url":null,"abstract":"This paper presents a method of visual tracking in recordings of isolated signs and the usage of the tracked features for automatic sign categorization. The tracking method is based on skin color segmentation and is suitable for recordings of a sign language dictionary. The result of the tracking is the location and outer contour of head and both hands. These features are used to categorize the signs into several categories: movement of hands, contact of body parts, symmetry of trajectory, location of the sign.","PeriodicalId":351090,"journal":{"name":"The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility","volume":"173 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic sign categorization using visual data\",\"authors\":\"Marek Hruúz\",\"doi\":\"10.1145/2049536.2049581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of visual tracking in recordings of isolated signs and the usage of the tracked features for automatic sign categorization. The tracking method is based on skin color segmentation and is suitable for recordings of a sign language dictionary. The result of the tracking is the location and outer contour of head and both hands. These features are used to categorize the signs into several categories: movement of hands, contact of body parts, symmetry of trajectory, location of the sign.\",\"PeriodicalId\":351090,\"journal\":{\"name\":\"The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility\",\"volume\":\"173 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2049536.2049581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2049536.2049581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种孤立符号记录的视觉跟踪方法,并利用跟踪特征对符号进行自动分类。该跟踪方法基于肤色分割,适用于手语词典的记录。跟踪的结果是头部和双手的位置和外部轮廓。这些特征被用来将标志分为几类:手的运动,身体部位的接触,轨迹的对称性,标志的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic sign categorization using visual data
This paper presents a method of visual tracking in recordings of isolated signs and the usage of the tracked features for automatic sign categorization. The tracking method is based on skin color segmentation and is suitable for recordings of a sign language dictionary. The result of the tracking is the location and outer contour of head and both hands. These features are used to categorize the signs into several categories: movement of hands, contact of body parts, symmetry of trajectory, location of the sign.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信