动态环境下核自适应滤波字典的高效构造

Taichi Ishida, Toshihisa Tanaka
{"title":"动态环境下核自适应滤波字典的高效构造","authors":"Taichi Ishida, Toshihisa Tanaka","doi":"10.1109/ICASSP.2015.7178629","DOIUrl":null,"url":null,"abstract":"One of the major challenges in kernel adaptive filtering is how to construct an efficient dictionary of observed input signals. In this paper, we propose novel dictionary adaptation rules for kernel adaptive filtering. The first algorithm can efficiently “move” elements of the dictionary to increase the approximation performance. The second algorithm mainly focuses on a nonstationary system, which can yield the increase of the dictionary size. The proposed method can eliminate unnecessary elements in the dictionary. Numerical examples support the efficacy of the proposed methods.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient construction of dictionaries for kernel adaptive filtering in a dynamic environment\",\"authors\":\"Taichi Ishida, Toshihisa Tanaka\",\"doi\":\"10.1109/ICASSP.2015.7178629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in kernel adaptive filtering is how to construct an efficient dictionary of observed input signals. In this paper, we propose novel dictionary adaptation rules for kernel adaptive filtering. The first algorithm can efficiently “move” elements of the dictionary to increase the approximation performance. The second algorithm mainly focuses on a nonstationary system, which can yield the increase of the dictionary size. The proposed method can eliminate unnecessary elements in the dictionary. Numerical examples support the efficacy of the proposed methods.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

核自适应滤波的主要挑战之一是如何构造一个有效的输入信号字典。本文提出了一种新的字典自适应规则用于核自适应滤波。第一种算法可以有效地“移动”字典中的元素以提高近似性能。第二种算法主要关注非平稳系统,它可以产生字典大小的增加。该方法可以消除字典中不需要的元素。数值算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient construction of dictionaries for kernel adaptive filtering in a dynamic environment
One of the major challenges in kernel adaptive filtering is how to construct an efficient dictionary of observed input signals. In this paper, we propose novel dictionary adaptation rules for kernel adaptive filtering. The first algorithm can efficiently “move” elements of the dictionary to increase the approximation performance. The second algorithm mainly focuses on a nonstationary system, which can yield the increase of the dictionary size. The proposed method can eliminate unnecessary elements in the dictionary. Numerical examples support the efficacy of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信