通过具有不同数据模型和维度的多个可视化上下文进行交互式数据探索

Phi Giang Pham, M. Huang, Quang Vinh Nguyen
{"title":"通过具有不同数据模型和维度的多个可视化上下文进行交互式数据探索","authors":"Phi Giang Pham, M. Huang, Quang Vinh Nguyen","doi":"10.1109/iV.2017.53","DOIUrl":null,"url":null,"abstract":"Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"75 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Data Exploration through Multiple Visual Contexts with Different Data Models and Dimensions\",\"authors\":\"Phi Giang Pham, M. Huang, Quang Vinh Nguyen\",\"doi\":\"10.1109/iV.2017.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.\",\"PeriodicalId\":410876,\"journal\":{\"name\":\"2017 21st International Conference Information Visualisation (IV)\",\"volume\":\"75 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2017.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可视化分析在向对数据探索感兴趣和专注的受众提供见解方面发挥着关键作用。在关系数据领域,为了处理这些数据特征,提出了许多先进的可视化工具和框架。然而,这些方法大多没有充分考虑到从数据模型挖掘到查询利用维度和数据值的全过程,可能会对勘探活动造成干扰。本文通过数据模型、数据维度和数据值的自动互联,提出了一种新的关系数据分析交互式探索框架。基本思想是通过整合我们之前在节点链接、平行坐标和散点图上的技术来构建这些上下文表示的相对可切换链。这种方法使用户能够在探索的任何阶段灵活地对所需的上下文进行相对查询,以实现深度数据理解。框架演示的典型案例研究的结果表明,我们的方法能够处理所解决的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Data Exploration through Multiple Visual Contexts with Different Data Models and Dimensions
Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信