{"title":"通过具有不同数据模型和维度的多个可视化上下文进行交互式数据探索","authors":"Phi Giang Pham, M. Huang, Quang Vinh Nguyen","doi":"10.1109/iV.2017.53","DOIUrl":null,"url":null,"abstract":"Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"75 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Data Exploration through Multiple Visual Contexts with Different Data Models and Dimensions\",\"authors\":\"Phi Giang Pham, M. Huang, Quang Vinh Nguyen\",\"doi\":\"10.1109/iV.2017.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.\",\"PeriodicalId\":410876,\"journal\":{\"name\":\"2017 21st International Conference Information Visualisation (IV)\",\"volume\":\"75 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2017.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Data Exploration through Multiple Visual Contexts with Different Data Models and Dimensions
Visual analytics plays a key role in bringing insights to audiences who are interested and dedicated in data exploration. In the area of relational data, many advanced visualization tools and frameworks are proposed in order to dealing with such data features. However, the majority of those have not greatly considered the whole process from data-model mining to query utilizing on dimensions and data values, which might cause interruption to exploration activities. This paper presents a new interactive exploration framework for relational data analysis through automatic interconnection of data models, data dimensions and data values. The basic idea is to construct a relative and switchable chain of those context representations by integrating our previous techniques on node-link, parallel coordinate and scatterplot graphics. This approach enables users to flexibly make relative queries on desired contexts at any stage of exploration for deep data understanding. The result from a typical case study for the framework demonstration indicates that our approach is able to handle the addressed challenge.