城市稀疏公交探测数据的统计建模与分析

A. Bejan, R. Gibbens, David Evans, A. Beresford, J. Bacon, A. Friday
{"title":"城市稀疏公交探测数据的统计建模与分析","authors":"A. Bejan, R. Gibbens, David Evans, A. Beresford, J. Bacon, A. Friday","doi":"10.1109/ITSC.2010.5625144","DOIUrl":null,"url":null,"abstract":"Congestion in urban areas causes financial loss to business and increased use of energy compared with free-flowing traffic. Providing citizens with accurate information on traffic conditions can encourage journeys at times of low congestion and uptake of public transport. Installing the measurement infrastructure in a city to provide this information is expensive and potentially invades privacy. Increasingly, public transport vehicles are equipped with sensors to provide real-time arrival time estimates, but these data are sparse. Our work shows how these data can be used to estimate journey times experienced by road users generally. In this paper we describe (i) what a typical data set from a fleet of over 100 buses looks like; (ii) describe an algorithm to extract bus journeys and estimate their duration along a single route; (iii) show how to visualise journey times and the influence of contextual factors; (iv) validate our approach for recovering speed information from the sparse movement data.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Statistical modelling and analysis of sparse bus probe data in urban areas\",\"authors\":\"A. Bejan, R. Gibbens, David Evans, A. Beresford, J. Bacon, A. Friday\",\"doi\":\"10.1109/ITSC.2010.5625144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Congestion in urban areas causes financial loss to business and increased use of energy compared with free-flowing traffic. Providing citizens with accurate information on traffic conditions can encourage journeys at times of low congestion and uptake of public transport. Installing the measurement infrastructure in a city to provide this information is expensive and potentially invades privacy. Increasingly, public transport vehicles are equipped with sensors to provide real-time arrival time estimates, but these data are sparse. Our work shows how these data can be used to estimate journey times experienced by road users generally. In this paper we describe (i) what a typical data set from a fleet of over 100 buses looks like; (ii) describe an algorithm to extract bus journeys and estimate their duration along a single route; (iii) show how to visualise journey times and the influence of contextual factors; (iv) validate our approach for recovering speed information from the sparse movement data.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5625144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

与自由流动的交通相比,城市地区的拥堵会给企业带来经济损失,并增加能源的使用。向市民提供有关交通状况的准确信息,可以鼓励他们在交通不拥挤的时候出行,并鼓励他们乘坐公共交通工具。在城市中安装测量基础设施以提供这些信息是昂贵的,并且可能侵犯隐私。越来越多的公共交通工具配备了传感器来提供实时到达时间估计,但这些数据很少。我们的研究表明,这些数据可以用来估计道路使用者的出行时间。在本文中,我们描述了(i)来自100多辆公共汽车车队的典型数据集是什么样的;(ii)描述一种算法,以提取沿一条路线的巴士行程并估计其持续时间;(iii)展示如何可视化旅行时间和环境因素的影响;(iv)验证从稀疏运动数据中恢复速度信息的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical modelling and analysis of sparse bus probe data in urban areas
Congestion in urban areas causes financial loss to business and increased use of energy compared with free-flowing traffic. Providing citizens with accurate information on traffic conditions can encourage journeys at times of low congestion and uptake of public transport. Installing the measurement infrastructure in a city to provide this information is expensive and potentially invades privacy. Increasingly, public transport vehicles are equipped with sensors to provide real-time arrival time estimates, but these data are sparse. Our work shows how these data can be used to estimate journey times experienced by road users generally. In this paper we describe (i) what a typical data set from a fleet of over 100 buses looks like; (ii) describe an algorithm to extract bus journeys and estimate their duration along a single route; (iii) show how to visualise journey times and the influence of contextual factors; (iv) validate our approach for recovering speed information from the sparse movement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信