基于变结构系统理论的模糊神经网络训练新方法

O. Cigdem, E. Kayacan, M. A. Khanesar, O. Kaynak, M. Teshnehlab
{"title":"基于变结构系统理论的模糊神经网络训练新方法","authors":"O. Cigdem, E. Kayacan, M. A. Khanesar, O. Kaynak, M. Teshnehlab","doi":"10.1109/CICA.2011.5945757","DOIUrl":null,"url":null,"abstract":"Uncertainty is an inevitable problem in real-time industrial control systems and, to handle this problem and the additional one of possible variations in the parameters of the system, the use of sliding mode control theory-based approaches is frequently suggested. In this paper, instead of using a conventional sliding mode controller, a sliding mode control theory-based learning algorithm is proposed to train the fuzzy neural networks in a feedback-error-learning structure. The parameters of the fuzzy neural network are tuned by the proposed algorithm not to minimize the error function but to ensure that the error satisfies a stable equation. The parameter update rules of the fuzzy neural network are derived, and the proof of the learning algorithm is verified by using the Lyapunov stability method. The proposed method is tested on a real-time servo system with time-varying and nonlinear load conditions.","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"5 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel training method based on variable structure systems theory for fuzzy neural networks\",\"authors\":\"O. Cigdem, E. Kayacan, M. A. Khanesar, O. Kaynak, M. Teshnehlab\",\"doi\":\"10.1109/CICA.2011.5945757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty is an inevitable problem in real-time industrial control systems and, to handle this problem and the additional one of possible variations in the parameters of the system, the use of sliding mode control theory-based approaches is frequently suggested. In this paper, instead of using a conventional sliding mode controller, a sliding mode control theory-based learning algorithm is proposed to train the fuzzy neural networks in a feedback-error-learning structure. The parameters of the fuzzy neural network are tuned by the proposed algorithm not to minimize the error function but to ensure that the error satisfies a stable equation. The parameter update rules of the fuzzy neural network are derived, and the proof of the learning algorithm is verified by using the Lyapunov stability method. The proposed method is tested on a real-time servo system with time-varying and nonlinear load conditions.\",\"PeriodicalId\":420555,\"journal\":{\"name\":\"Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"5 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2011.5945757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

不确定性是实时工业控制系统中不可避免的问题,为了处理这一问题以及系统参数可能变化的附加问题,经常建议使用基于滑模控制理论的方法。本文提出了一种基于滑模控制理论的学习算法来代替传统的滑模控制器,以反馈-误差-学习结构训练模糊神经网络。该算法对模糊神经网络参数的整定不是为了使误差函数最小,而是为了使误差满足稳定方程。推导了模糊神经网络的参数更新规则,并用Lyapunov稳定性方法验证了学习算法的证明。在具有时变和非线性负载条件的实时伺服系统上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel training method based on variable structure systems theory for fuzzy neural networks
Uncertainty is an inevitable problem in real-time industrial control systems and, to handle this problem and the additional one of possible variations in the parameters of the system, the use of sliding mode control theory-based approaches is frequently suggested. In this paper, instead of using a conventional sliding mode controller, a sliding mode control theory-based learning algorithm is proposed to train the fuzzy neural networks in a feedback-error-learning structure. The parameters of the fuzzy neural network are tuned by the proposed algorithm not to minimize the error function but to ensure that the error satisfies a stable equation. The parameter update rules of the fuzzy neural network are derived, and the proof of the learning algorithm is verified by using the Lyapunov stability method. The proposed method is tested on a real-time servo system with time-varying and nonlinear load conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信