{"title":"用于图像超分辨率的任意反投影网络","authors":"Tingsong Ma, Wenhong Tian","doi":"10.1142/s1469026820500261","DOIUrl":null,"url":null,"abstract":"Recently, a method called Meta-SR has solved the problem of super-resolution of arbitrary scale factor with only one single model. However, it has a limited reconstruction accuracy compared with RDN[Formula: see text] and EDSR[Formula: see text]. Inspired by Meta-SR, we noticed that by combining the core idea of Meta-SR and D-DBPN, we might construct a network that has as good image reconstruction accuracy as D-DBPN’s, at the same time, keeps arbitrary scaling function. According to Meta-SR’s Meta-Upscale Module, we designed a different structure called Meta-Downscale Module. By using these two different modules and back-projection structure, we construct an arbitrary back-projection network, which has the ability to enlarge images with arbitrary scale factor by using only one single model, meanwhile, obtains state-of-the-art reconstruction results. Through extensive experiments, our proposed method performs better reconstruction effect than Meta-SR and more efficient than D-DBPN. Besides that, we also evaluated the proposed method on widely used benchmark dataset on single image super-resolution. The experimental results show the superiority of our model compared to RDN+ and EDSR+.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arbitrary Back-Projection Networks for Image Super-Resolution\",\"authors\":\"Tingsong Ma, Wenhong Tian\",\"doi\":\"10.1142/s1469026820500261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a method called Meta-SR has solved the problem of super-resolution of arbitrary scale factor with only one single model. However, it has a limited reconstruction accuracy compared with RDN[Formula: see text] and EDSR[Formula: see text]. Inspired by Meta-SR, we noticed that by combining the core idea of Meta-SR and D-DBPN, we might construct a network that has as good image reconstruction accuracy as D-DBPN’s, at the same time, keeps arbitrary scaling function. According to Meta-SR’s Meta-Upscale Module, we designed a different structure called Meta-Downscale Module. By using these two different modules and back-projection structure, we construct an arbitrary back-projection network, which has the ability to enlarge images with arbitrary scale factor by using only one single model, meanwhile, obtains state-of-the-art reconstruction results. Through extensive experiments, our proposed method performs better reconstruction effect than Meta-SR and more efficient than D-DBPN. Besides that, we also evaluated the proposed method on widely used benchmark dataset on single image super-resolution. The experimental results show the superiority of our model compared to RDN+ and EDSR+.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arbitrary Back-Projection Networks for Image Super-Resolution
Recently, a method called Meta-SR has solved the problem of super-resolution of arbitrary scale factor with only one single model. However, it has a limited reconstruction accuracy compared with RDN[Formula: see text] and EDSR[Formula: see text]. Inspired by Meta-SR, we noticed that by combining the core idea of Meta-SR and D-DBPN, we might construct a network that has as good image reconstruction accuracy as D-DBPN’s, at the same time, keeps arbitrary scaling function. According to Meta-SR’s Meta-Upscale Module, we designed a different structure called Meta-Downscale Module. By using these two different modules and back-projection structure, we construct an arbitrary back-projection network, which has the ability to enlarge images with arbitrary scale factor by using only one single model, meanwhile, obtains state-of-the-art reconstruction results. Through extensive experiments, our proposed method performs better reconstruction effect than Meta-SR and more efficient than D-DBPN. Besides that, we also evaluated the proposed method on widely used benchmark dataset on single image super-resolution. The experimental results show the superiority of our model compared to RDN+ and EDSR+.