自然语言音系的贝叶斯模型:从基础形式生成替代

David Ellis
{"title":"自然语言音系的贝叶斯模型:从基础形式生成替代","authors":"David Ellis","doi":"10.3115/1626324.1626327","DOIUrl":null,"url":null,"abstract":"A stochastic approach to learning phonology. The model presented captures 7--15% more phonologically plausible underlying forms than a simple majority solution, because it prefers \"pure\" alternations. It could be useful in cases where an approximate solution is needed, or as a seed for more complex models. A similar process could be involved in some stages of child language acquisition; in particular, early learning of phonotactics.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian Model of Natural Language Phonology: Generating Alternations from Underlying Forms\",\"authors\":\"David Ellis\",\"doi\":\"10.3115/1626324.1626327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic approach to learning phonology. The model presented captures 7--15% more phonologically plausible underlying forms than a simple majority solution, because it prefers \\\"pure\\\" alternations. It could be useful in cases where an approximate solution is needed, or as a seed for more complex models. A similar process could be involved in some stages of child language acquisition; in particular, early learning of phonotactics.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1626324.1626327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1626324.1626327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习音韵学的随机方法。所提出的模型比简单的多数解决方案多捕获了7- 15%的语音上似是而非的潜在形式,因为它更喜欢“纯粹”的替代。在需要近似解的情况下,或者作为更复杂模型的种子,它可能很有用。类似的过程可能涉及儿童语言习得的某些阶段;尤其是语音战术的早期学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Model of Natural Language Phonology: Generating Alternations from Underlying Forms
A stochastic approach to learning phonology. The model presented captures 7--15% more phonologically plausible underlying forms than a simple majority solution, because it prefers "pure" alternations. It could be useful in cases where an approximate solution is needed, or as a seed for more complex models. A similar process could be involved in some stages of child language acquisition; in particular, early learning of phonotactics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信