相关氧化物神经形态装置的瞬态记忆和学习

Sandip Mondal, R. Bisht, Chengyang Zhang, S. Ramanathan
{"title":"相关氧化物神经形态装置的瞬态记忆和学习","authors":"Sandip Mondal, R. Bisht, Chengyang Zhang, S. Ramanathan","doi":"10.1109/ICEE56203.2022.10117626","DOIUrl":null,"url":null,"abstract":"Biological neural systems can learn and forget information that is one possible mechanism for stability and lifelong learning of neural circuits. Emulating such features in electronic devices is essential for advancing neuromorphic electronics. We discuss examples of memory devices using strongly correlated oxides to illustrate learning behavior in this conference proceeding. We give examples of transient memory and forgetting dynamics by controlling the strength of the electrical stimuli as well as stochastic behavior. Using examples of prototypical Mott insulators such as NiO and VO2, we present our vision for a neuromorphic platform utilizing quantum materials. The studies inform design of electronic hardware in emerging AI and can in future be extended to brain-machine interfaces.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient memory and learning in correlated oxide neuromorphic devices\",\"authors\":\"Sandip Mondal, R. Bisht, Chengyang Zhang, S. Ramanathan\",\"doi\":\"10.1109/ICEE56203.2022.10117626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological neural systems can learn and forget information that is one possible mechanism for stability and lifelong learning of neural circuits. Emulating such features in electronic devices is essential for advancing neuromorphic electronics. We discuss examples of memory devices using strongly correlated oxides to illustrate learning behavior in this conference proceeding. We give examples of transient memory and forgetting dynamics by controlling the strength of the electrical stimuli as well as stochastic behavior. Using examples of prototypical Mott insulators such as NiO and VO2, we present our vision for a neuromorphic platform utilizing quantum materials. The studies inform design of electronic hardware in emerging AI and can in future be extended to brain-machine interfaces.\",\"PeriodicalId\":281727,\"journal\":{\"name\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE56203.2022.10117626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10117626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物神经系统可以学习和忘记信息,这可能是神经回路稳定和终身学习的一种机制。在电子设备中模拟这些特征对于推进神经形态电子学至关重要。在本次会议中,我们讨论了使用强相关氧化物的存储设备的例子来说明学习行为。我们给出了通过控制电刺激强度和随机行为的瞬态记忆和遗忘动力学的例子。以Mott绝缘体NiO和VO2为例,我们展示了利用量子材料的神经形态平台的愿景。这些研究为新兴人工智能的电子硬件设计提供了信息,并可以在未来扩展到脑机接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient memory and learning in correlated oxide neuromorphic devices
Biological neural systems can learn and forget information that is one possible mechanism for stability and lifelong learning of neural circuits. Emulating such features in electronic devices is essential for advancing neuromorphic electronics. We discuss examples of memory devices using strongly correlated oxides to illustrate learning behavior in this conference proceeding. We give examples of transient memory and forgetting dynamics by controlling the strength of the electrical stimuli as well as stochastic behavior. Using examples of prototypical Mott insulators such as NiO and VO2, we present our vision for a neuromorphic platform utilizing quantum materials. The studies inform design of electronic hardware in emerging AI and can in future be extended to brain-machine interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信