一种新的PSO和DE混合模型的数据分类算法

Wannaporn Teekeng, Pornkid Unkaw
{"title":"一种新的PSO和DE混合模型的数据分类算法","authors":"Wannaporn Teekeng, Pornkid Unkaw","doi":"10.1109/SNPD.2017.8022699","DOIUrl":null,"url":null,"abstract":"This paper presents a new hybrid HPSO-DE classification algorithm that combines the advantages of particle swarm optimization algorithm and differential evolution algorithm. Major improvements achieved by this combination are 1) flight improvement — flight behaviors are more and better diversified because each of the top 3 particles gets put into 3 different groups of the rest and then each group is mutated with a different operator and 2) particle improvement — members of a succeeding generation are composed of more of better particles than those of the current generation because better particles are allowed to produce more offspring. HPSO-DE and several other classification models were performance tested with 8 benchmarking datasets, and HPSO-DE was found to outperform them on 6 out of the 8.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new hybrid model of PSO and DE algorithm for data classification\",\"authors\":\"Wannaporn Teekeng, Pornkid Unkaw\",\"doi\":\"10.1109/SNPD.2017.8022699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new hybrid HPSO-DE classification algorithm that combines the advantages of particle swarm optimization algorithm and differential evolution algorithm. Major improvements achieved by this combination are 1) flight improvement — flight behaviors are more and better diversified because each of the top 3 particles gets put into 3 different groups of the rest and then each group is mutated with a different operator and 2) particle improvement — members of a succeeding generation are composed of more of better particles than those of the current generation because better particles are allowed to produce more offspring. HPSO-DE and several other classification models were performance tested with 8 benchmarking datasets, and HPSO-DE was found to outperform them on 6 out of the 8.\",\"PeriodicalId\":186094,\"journal\":{\"name\":\"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2017.8022699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

结合粒子群优化算法和差分进化算法的优点,提出了一种新的混合HPSO-DE分类算法。通过这种组合实现的主要改进是1)飞行改进-飞行行为越来越多样化,因为前3个粒子中的每一个都被放入其余的3个不同的组中,然后每组都有不同的操作符突变2)粒子改进-下一代的成员比当前一代的成员由更多更好的粒子组成,因为更好的粒子可以产生更多的后代。用8个基准数据集对HPSO-DE和其他几个分类模型进行了性能测试,发现HPSO-DE在8个基准数据集中的6个上优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new hybrid model of PSO and DE algorithm for data classification
This paper presents a new hybrid HPSO-DE classification algorithm that combines the advantages of particle swarm optimization algorithm and differential evolution algorithm. Major improvements achieved by this combination are 1) flight improvement — flight behaviors are more and better diversified because each of the top 3 particles gets put into 3 different groups of the rest and then each group is mutated with a different operator and 2) particle improvement — members of a succeeding generation are composed of more of better particles than those of the current generation because better particles are allowed to produce more offspring. HPSO-DE and several other classification models were performance tested with 8 benchmarking datasets, and HPSO-DE was found to outperform them on 6 out of the 8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信