基于信号处理技术的网络异常检测

T. Andrysiak, Ł. Saganowski, M. Maszewski
{"title":"基于信号处理技术的网络异常检测","authors":"T. Andrysiak, Ł. Saganowski, M. Maszewski","doi":"10.2478/v10248-012-0071-6","DOIUrl":null,"url":null,"abstract":"Abstract The article depicts possibility of using Matching Pursuit decomposition in order to recognize unspecified hazards in network traffic. Furthermore, the work aims to present feasible enhancements to the anomaly detection method, as well as their efficiency on the basis of a wide collection of pattern test traces.","PeriodicalId":271906,"journal":{"name":"Image Processing & Communications","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network anomaly detection based on signal processing techniques\",\"authors\":\"T. Andrysiak, Ł. Saganowski, M. Maszewski\",\"doi\":\"10.2478/v10248-012-0071-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article depicts possibility of using Matching Pursuit decomposition in order to recognize unspecified hazards in network traffic. Furthermore, the work aims to present feasible enhancements to the anomaly detection method, as well as their efficiency on the basis of a wide collection of pattern test traces.\",\"PeriodicalId\":271906,\"journal\":{\"name\":\"Image Processing & Communications\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Processing & Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/v10248-012-0071-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Processing & Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10248-012-0071-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文描述了利用匹配追踪分解来识别网络流量中未指定危险的可能性。此外,该工作的目的是在广泛收集模式测试痕迹的基础上,对异常检测方法及其效率提出可行的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network anomaly detection based on signal processing techniques
Abstract The article depicts possibility of using Matching Pursuit decomposition in order to recognize unspecified hazards in network traffic. Furthermore, the work aims to present feasible enhancements to the anomaly detection method, as well as their efficiency on the basis of a wide collection of pattern test traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信