利用基于copula的计量经济模型计算文档间的语义相似度

Jih-Jeng Huang
{"title":"利用基于copula的计量经济模型计算文档间的语义相似度","authors":"Jih-Jeng Huang","doi":"10.1145/3357254.3357277","DOIUrl":null,"url":null,"abstract":"Semantic similarity is important information with which decision-makers can cluster, classify, or compare documents in text mining. Statistical and topological methods are two major ways to determine semantic similarity. However, conventional methods ignore the time factor when calculating the similarity between documents. It should be highlighted that narrative emotions play a critical role in comparing documents. In this paper, copula-based econometric models, including ARMA and GARCH families, are used to calculate the narrative semantic similarity between documents.","PeriodicalId":361892,"journal":{"name":"International Conference on Artificial Intelligence and Pattern Recognition","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the semantic similarity between documents by the copula-based econometric models\",\"authors\":\"Jih-Jeng Huang\",\"doi\":\"10.1145/3357254.3357277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic similarity is important information with which decision-makers can cluster, classify, or compare documents in text mining. Statistical and topological methods are two major ways to determine semantic similarity. However, conventional methods ignore the time factor when calculating the similarity between documents. It should be highlighted that narrative emotions play a critical role in comparing documents. In this paper, copula-based econometric models, including ARMA and GARCH families, are used to calculate the narrative semantic similarity between documents.\",\"PeriodicalId\":361892,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357254.3357277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357254.3357277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义相似度是文本挖掘中决策者聚类、分类或比较文档的重要信息。统计方法和拓扑方法是确定语义相似度的两种主要方法。然而,传统方法在计算文档之间的相似度时忽略了时间因素。需要强调的是,叙事情感在文献比较中起着至关重要的作用。本文采用基于copula的计量经济模型,包括ARMA和GARCH族来计算文档之间的叙事语义相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the semantic similarity between documents by the copula-based econometric models
Semantic similarity is important information with which decision-makers can cluster, classify, or compare documents in text mining. Statistical and topological methods are two major ways to determine semantic similarity. However, conventional methods ignore the time factor when calculating the similarity between documents. It should be highlighted that narrative emotions play a critical role in comparing documents. In this paper, copula-based econometric models, including ARMA and GARCH families, are used to calculate the narrative semantic similarity between documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信