使用Yolo V3进行行人计数

Aiswarya Menon, Bini Omman, Asha S
{"title":"使用Yolo V3进行行人计数","authors":"Aiswarya Menon, Bini Omman, Asha S","doi":"10.1109/ICITIIT51526.2021.9399607","DOIUrl":null,"url":null,"abstract":"Object detection is the process of determining the presence, location, and type or class of at least one object using a bounding box. The person detection process produces a bounding box and allot a class label as a person based on YOLO v3. In YOLO v3 the features are learned, divides the image cells and each cell says a bounding box and entity classification directly. There could be more than one bounding box per person, but the system makes use of non-maximum suppression to reduce the number of bounding boxes to one per person. Finally, the number of persons in the image and video are calculated using the count of the bounding boxes. The dataset used for static pedestrian detection is the INRIAdataset and ShanghaiTech dataset. Yolo_Mark is used for marking bounding boxes of persons and gets its annotation files using 243 images from the INRIA dataset. Darknet is used as the framework for implementing YOLOv3. From INRIA Dataset 120 images are used for testing purposes. Testing on the INRIA dataset resulted in an accuracy of 96.1%. From the Shanghai tech-B, dataset 56 images are used for testing. Testing resulted in an accuracy of 87.3%.","PeriodicalId":161452,"journal":{"name":"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pedestrian Counting Using Yolo V3\",\"authors\":\"Aiswarya Menon, Bini Omman, Asha S\",\"doi\":\"10.1109/ICITIIT51526.2021.9399607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is the process of determining the presence, location, and type or class of at least one object using a bounding box. The person detection process produces a bounding box and allot a class label as a person based on YOLO v3. In YOLO v3 the features are learned, divides the image cells and each cell says a bounding box and entity classification directly. There could be more than one bounding box per person, but the system makes use of non-maximum suppression to reduce the number of bounding boxes to one per person. Finally, the number of persons in the image and video are calculated using the count of the bounding boxes. The dataset used for static pedestrian detection is the INRIAdataset and ShanghaiTech dataset. Yolo_Mark is used for marking bounding boxes of persons and gets its annotation files using 243 images from the INRIA dataset. Darknet is used as the framework for implementing YOLOv3. From INRIA Dataset 120 images are used for testing purposes. Testing on the INRIA dataset resulted in an accuracy of 96.1%. From the Shanghai tech-B, dataset 56 images are used for testing. Testing resulted in an accuracy of 87.3%.\",\"PeriodicalId\":161452,\"journal\":{\"name\":\"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT51526.2021.9399607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT51526.2021.9399607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对象检测是使用边界框确定至少一个对象的存在、位置和类型或类别的过程。人员检测过程生成一个边界框,并根据YOLO v3为人员分配一个类标签。在YOLO v3中,特征被学习,分割图像单元格,每个单元格直接表示一个边界框和实体分类。每个人可能有多个边界框,但系统使用非最大抑制将边界框的数量减少到每个人一个。最后,利用边界框的计数计算图像和视频中的人数。静态行人检测使用的数据集是INRIAdataset和ShanghaiTech数据集。Yolo_Mark用于标记人的边界框,并使用来自INRIA数据集的243幅图像获取其注释文件。暗网被用作实现YOLOv3的框架。来自INRIA数据集的120幅图像用于测试目的。在INRIA数据集上进行测试,准确率达到96.1%。来自上海tech-B的数据集56图像用于测试。测试结果的准确率为87.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian Counting Using Yolo V3
Object detection is the process of determining the presence, location, and type or class of at least one object using a bounding box. The person detection process produces a bounding box and allot a class label as a person based on YOLO v3. In YOLO v3 the features are learned, divides the image cells and each cell says a bounding box and entity classification directly. There could be more than one bounding box per person, but the system makes use of non-maximum suppression to reduce the number of bounding boxes to one per person. Finally, the number of persons in the image and video are calculated using the count of the bounding boxes. The dataset used for static pedestrian detection is the INRIAdataset and ShanghaiTech dataset. Yolo_Mark is used for marking bounding boxes of persons and gets its annotation files using 243 images from the INRIA dataset. Darknet is used as the framework for implementing YOLOv3. From INRIA Dataset 120 images are used for testing purposes. Testing on the INRIA dataset resulted in an accuracy of 96.1%. From the Shanghai tech-B, dataset 56 images are used for testing. Testing resulted in an accuracy of 87.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信