小目标检测的集成融合

Hao-Yu Hou, Mu-Yi Shen, Chia-Chi Hsu, En-Ming Huang, Yu-Chen Huang, Yu-Cheng Xia, Chien-Yao Wang, Chun-Yi Lee
{"title":"小目标检测的集成融合","authors":"Hao-Yu Hou, Mu-Yi Shen, Chia-Chi Hsu, En-Ming Huang, Yu-Chen Huang, Yu-Cheng Xia, Chien-Yao Wang, Chun-Yi Lee","doi":"10.23919/MVA57639.2023.10215748","DOIUrl":null,"url":null,"abstract":"Detecting small objects is often impeded by blurriness and low resolution, which poses substantial challenges for accurately detecting and localizing such objects. In addition, conventional feature extraction methods usually face difficulties in capturing effective representations for these entities, as down-sampling and convolutional operations contribute to the blurring of small object details. To tackle these challenges, this study introduces an approach for detecting tiny objects through ensemble fusion, which leverages the advantages of multiple diverse model variants and combines their predictions. Experimental results reveal that the proposed method effectively harnesses the strengths of each model via ensemble fusion, leading to enhanced accuracy and robustness in small object detection. Our model achieves the highest score of 0.776 in terms of average precision (AP) at an IoU threshold of 0.5 in the MVA Challenge on Small Object Detection for Birds.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble Fusion for Small Object Detection\",\"authors\":\"Hao-Yu Hou, Mu-Yi Shen, Chia-Chi Hsu, En-Ming Huang, Yu-Chen Huang, Yu-Cheng Xia, Chien-Yao Wang, Chun-Yi Lee\",\"doi\":\"10.23919/MVA57639.2023.10215748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting small objects is often impeded by blurriness and low resolution, which poses substantial challenges for accurately detecting and localizing such objects. In addition, conventional feature extraction methods usually face difficulties in capturing effective representations for these entities, as down-sampling and convolutional operations contribute to the blurring of small object details. To tackle these challenges, this study introduces an approach for detecting tiny objects through ensemble fusion, which leverages the advantages of multiple diverse model variants and combines their predictions. Experimental results reveal that the proposed method effectively harnesses the strengths of each model via ensemble fusion, leading to enhanced accuracy and robustness in small object detection. Our model achieves the highest score of 0.776 in terms of average precision (AP) at an IoU threshold of 0.5 in the MVA Challenge on Small Object Detection for Birds.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

小物体的检测往往受到模糊和低分辨率的阻碍,这对准确检测和定位小物体提出了很大的挑战。此外,传统的特征提取方法通常在捕获这些实体的有效表示方面面临困难,因为降采样和卷积操作会导致小对象细节的模糊。为了应对这些挑战,本研究引入了一种通过集成融合检测微小物体的方法,该方法利用了多个不同模型变体的优势,并结合了它们的预测。实验结果表明,该方法通过集成融合有效地利用了各个模型的优势,提高了小目标检测的精度和鲁棒性。在鸟类小目标检测的MVA挑战中,我们的模型在IoU阈值为0.5的情况下,在平均精度(AP)方面取得了0.776的最高分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Fusion for Small Object Detection
Detecting small objects is often impeded by blurriness and low resolution, which poses substantial challenges for accurately detecting and localizing such objects. In addition, conventional feature extraction methods usually face difficulties in capturing effective representations for these entities, as down-sampling and convolutional operations contribute to the blurring of small object details. To tackle these challenges, this study introduces an approach for detecting tiny objects through ensemble fusion, which leverages the advantages of multiple diverse model variants and combines their predictions. Experimental results reveal that the proposed method effectively harnesses the strengths of each model via ensemble fusion, leading to enhanced accuracy and robustness in small object detection. Our model achieves the highest score of 0.776 in terms of average precision (AP) at an IoU threshold of 0.5 in the MVA Challenge on Small Object Detection for Birds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信