M. Ahmed, Z. Abadin, Md Anwar Hossain, Md. Imran Hossain, Rabindra Maitree
{"title":"基于PCA的反向传播神经网络在人脸识别中的实现","authors":"M. Ahmed, Z. Abadin, Md Anwar Hossain, Md. Imran Hossain, Rabindra Maitree","doi":"10.34257/GJCSTGVOL19IS3PG21","DOIUrl":null,"url":null,"abstract":"Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Back Propagation Neural Network with PCA for Face Recognition\",\"authors\":\"M. Ahmed, Z. Abadin, Md Anwar Hossain, Md. Imran Hossain, Rabindra Maitree\",\"doi\":\"10.34257/GJCSTGVOL19IS3PG21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.\",\"PeriodicalId\":340110,\"journal\":{\"name\":\"Global journal of computer science and technology\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global journal of computer science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/GJCSTGVOL19IS3PG21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJCSTGVOL19IS3PG21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Back Propagation Neural Network with PCA for Face Recognition
Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.