基于独立分量分析的多光谱图像无监督变化检测

M. Ceccarelli, A. Petrosino
{"title":"基于独立分量分析的多光谱图像无监督变化检测","authors":"M. Ceccarelli, A. Petrosino","doi":"10.1109/IST.2006.1650775","DOIUrl":null,"url":null,"abstract":"Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sens- ing, surveillance, medical diagnosis and treatment, civil infrastruc- ture, and underwater sensing. The paper proposes a data dependent change detection approach based on textural features extracted by the Independent Component Analysis (ICA) model. The properties of ICA allow to create energy features for computing multispectral and multitemporal difference im- ages to be classified. Our experiments on remote sensing images show that the proposed method can efficiently and effectively clas- sify temporal discontinuities corresponding to changed areas over the observed scenes.","PeriodicalId":175808,"journal":{"name":"Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques (IST 2006)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unsupervised Change Detection in Multispectral Images based on Independent Component Analysis\",\"authors\":\"M. Ceccarelli, A. Petrosino\",\"doi\":\"10.1109/IST.2006.1650775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sens- ing, surveillance, medical diagnosis and treatment, civil infrastruc- ture, and underwater sensing. The paper proposes a data dependent change detection approach based on textural features extracted by the Independent Component Analysis (ICA) model. The properties of ICA allow to create energy features for computing multispectral and multitemporal difference im- ages to be classified. Our experiments on remote sensing images show that the proposed method can efficiently and effectively clas- sify temporal discontinuities corresponding to changed areas over the observed scenes.\",\"PeriodicalId\":175808,\"journal\":{\"name\":\"Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques (IST 2006)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques (IST 2006)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2006.1650775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques (IST 2006)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2006.1650775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于在遥感、监测、医疗诊断和治疗、民用基础设施和水下传感等不同学科中有大量应用,因此在不同时间拍摄的同一场景的多幅图像中检测变化区域受到广泛关注。提出了一种基于独立分量分析(ICA)模型提取的纹理特征的数据依赖变化检测方法。ICA的特性允许创建用于计算多光谱和多时间差图像的能量特征。在遥感图像上进行的实验表明,该方法可以有效地对观测场景中变化区域对应的时间不连续进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Change Detection in Multispectral Images based on Independent Component Analysis
Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sens- ing, surveillance, medical diagnosis and treatment, civil infrastruc- ture, and underwater sensing. The paper proposes a data dependent change detection approach based on textural features extracted by the Independent Component Analysis (ICA) model. The properties of ICA allow to create energy features for computing multispectral and multitemporal difference im- ages to be classified. Our experiments on remote sensing images show that the proposed method can efficiently and effectively clas- sify temporal discontinuities corresponding to changed areas over the observed scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信