通用贝叶斯网络视觉系统中任务特定的实用程序

R. Rimey, C. Brown
{"title":"通用贝叶斯网络视觉系统中任务特定的实用程序","authors":"R. Rimey, C. Brown","doi":"10.1109/CVPR.1992.223214","DOIUrl":null,"url":null,"abstract":"TEA is a task-oriented computer vision system that uses Bayes nets and a maximum expected-utility decision rule to choose a sequence of task-dependent and opportunistic visual operations on the basis of their cost and (present and future) benefit. The authors discuss technical problems regarding utilities, present TEA-1's utility function (which approximates a two-step lookahead), and compare it to various simpler utility functions in experiments with real and simulated scenes.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Task-specific utility in a general Bayes net vision system\",\"authors\":\"R. Rimey, C. Brown\",\"doi\":\"10.1109/CVPR.1992.223214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TEA is a task-oriented computer vision system that uses Bayes nets and a maximum expected-utility decision rule to choose a sequence of task-dependent and opportunistic visual operations on the basis of their cost and (present and future) benefit. The authors discuss technical problems regarding utilities, present TEA-1's utility function (which approximates a two-step lookahead), and compare it to various simpler utility functions in experiments with real and simulated scenes.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

TEA是一个面向任务的计算机视觉系统,它使用贝叶斯网络和最大期望效用决策规则,根据成本和(现在和未来)效益选择一系列与任务相关的机会性视觉操作。作者讨论了有关效用的技术问题,提出了TEA-1的效用函数(近似于两步展望),并在真实和模拟场景的实验中将其与各种更简单的效用函数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task-specific utility in a general Bayes net vision system
TEA is a task-oriented computer vision system that uses Bayes nets and a maximum expected-utility decision rule to choose a sequence of task-dependent and opportunistic visual operations on the basis of their cost and (present and future) benefit. The authors discuss technical problems regarding utilities, present TEA-1's utility function (which approximates a two-step lookahead), and compare it to various simpler utility functions in experiments with real and simulated scenes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信