关于VC维近似的复杂度

Elchanan Mossel, C. Umans
{"title":"关于VC维近似的复杂度","authors":"Elchanan Mossel, C. Umans","doi":"10.1109/CCC.2001.933889","DOIUrl":null,"url":null,"abstract":"We study the complexity of approximating the VC dimension of a collection of sets, when the sets are encoded succinctly by a small circuit. We show that this problem is: /spl Sigma//sub 3//sup p/-hard to approximate to within a factor 2-/spl epsiv/ for any /spl epsiv/>0; approximable in A/spl Mscr/ to within a factor 2; and A/spl Mscr/-hard to approximate to within a factor N/sup /spl epsiv// for some constant /spl epsiv/>0. To obtain the /spl Sigma//sub 3//sup 9/-hardness results we solve a randomness extraction problem using list-decodable binary codes; for the positive results we utilize the Sauer-Shelah(-Perles) Lemma. The exact value of /spl epsiv/ in the A/spl Mscr/-hardness result depends on the degree achievable by explicit disperser constructions.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"On the complexity of approximating the VC dimension\",\"authors\":\"Elchanan Mossel, C. Umans\",\"doi\":\"10.1109/CCC.2001.933889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of approximating the VC dimension of a collection of sets, when the sets are encoded succinctly by a small circuit. We show that this problem is: /spl Sigma//sub 3//sup p/-hard to approximate to within a factor 2-/spl epsiv/ for any /spl epsiv/>0; approximable in A/spl Mscr/ to within a factor 2; and A/spl Mscr/-hard to approximate to within a factor N/sup /spl epsiv// for some constant /spl epsiv/>0. To obtain the /spl Sigma//sub 3//sup 9/-hardness results we solve a randomness extraction problem using list-decodable binary codes; for the positive results we utilize the Sauer-Shelah(-Perles) Lemma. The exact value of /spl epsiv/ in the A/spl Mscr/-hardness result depends on the degree achievable by explicit disperser constructions.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

研究了当集合被一个小电路简洁地编码时,逼近集合集合VC维的复杂度。我们证明这个问题是:/spl Sigma//sub 3//sup p/-难以在因子2内近似-/spl epsiv/对于任何/spl epsiv/>0;在A/spl Mscr/中近似于因子2以内;和A/spl Mscr/-难以近似到因子N/sup /spl epsiv//对于某些常数/spl epsiv/>0。为了获得/spl Sigma// sub3 //sup 9/-硬度结果,我们使用列表可解码的二进制码解决了随机抽取问题;对于正结果,我们利用Sauer-Shelah(-Perles)引理。A/spl Mscr/-硬度结果中/spl epsiv/的确切值取决于明确分散剂结构所能达到的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of approximating the VC dimension
We study the complexity of approximating the VC dimension of a collection of sets, when the sets are encoded succinctly by a small circuit. We show that this problem is: /spl Sigma//sub 3//sup p/-hard to approximate to within a factor 2-/spl epsiv/ for any /spl epsiv/>0; approximable in A/spl Mscr/ to within a factor 2; and A/spl Mscr/-hard to approximate to within a factor N/sup /spl epsiv// for some constant /spl epsiv/>0. To obtain the /spl Sigma//sub 3//sup 9/-hardness results we solve a randomness extraction problem using list-decodable binary codes; for the positive results we utilize the Sauer-Shelah(-Perles) Lemma. The exact value of /spl epsiv/ in the A/spl Mscr/-hardness result depends on the degree achievable by explicit disperser constructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信