T. Mehrling, C. Benedetti, C. Schroeder, E. Esarey
{"title":"基于准静态粒子单元码的离子运动等离子体加速器高效建模的子网格算法","authors":"T. Mehrling, C. Benedetti, C. Schroeder, E. Esarey","doi":"10.1109/AAC.2018.8659404","DOIUrl":null,"url":null,"abstract":"Ion motion has a strong impact on the quality preservation of electron beams in plasma-based colliders. While being crucial for the advance of plasma-based accelerators, the modeling of the physics of interest is highly challenging due to the large disparity of the relevant transverse length scales. To correctly model plasma-based collider schemes with ion motion, a high transverse resolution must be employed in particle-in-cell simulations, which, conventionally, entails significant computational costs. By introducing a refined subgrid in the witness beam region in a quasi-static particle-in-cell code, significant computational savings can be achieved. This numerical approach allows for the accurate modeling of plasma-based colliders with ion motion in the blowout regime while allowing for an orders of maznitude computational speedup.","PeriodicalId":339772,"journal":{"name":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Subgrid Algorithm for the Efficient Modeling of Plasma-Based Accelerators with Ion Motion Using Quasi-Static Particle-in-Cell Codes\",\"authors\":\"T. Mehrling, C. Benedetti, C. Schroeder, E. Esarey\",\"doi\":\"10.1109/AAC.2018.8659404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion motion has a strong impact on the quality preservation of electron beams in plasma-based colliders. While being crucial for the advance of plasma-based accelerators, the modeling of the physics of interest is highly challenging due to the large disparity of the relevant transverse length scales. To correctly model plasma-based collider schemes with ion motion, a high transverse resolution must be employed in particle-in-cell simulations, which, conventionally, entails significant computational costs. By introducing a refined subgrid in the witness beam region in a quasi-static particle-in-cell code, significant computational savings can be achieved. This numerical approach allows for the accurate modeling of plasma-based colliders with ion motion in the blowout regime while allowing for an orders of maznitude computational speedup.\",\"PeriodicalId\":339772,\"journal\":{\"name\":\"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AAC.2018.8659404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AAC.2018.8659404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Subgrid Algorithm for the Efficient Modeling of Plasma-Based Accelerators with Ion Motion Using Quasi-Static Particle-in-Cell Codes
Ion motion has a strong impact on the quality preservation of electron beams in plasma-based colliders. While being crucial for the advance of plasma-based accelerators, the modeling of the physics of interest is highly challenging due to the large disparity of the relevant transverse length scales. To correctly model plasma-based collider schemes with ion motion, a high transverse resolution must be employed in particle-in-cell simulations, which, conventionally, entails significant computational costs. By introducing a refined subgrid in the witness beam region in a quasi-static particle-in-cell code, significant computational savings can be achieved. This numerical approach allows for the accurate modeling of plasma-based colliders with ion motion in the blowout regime while allowing for an orders of maznitude computational speedup.