{"title":"纠缠硬币和叠加步行者的量子行走","authors":"S. Venegas-Andraca","doi":"10.1109/GLOCOMW.2018.8644206","DOIUrl":null,"url":null,"abstract":"We introduce a generalization of quantum walks with entangled coins consisting of a model of discrete quantum walks with coin pairs under various degrees of entanglement and walkers in quantum superposition as initial states. We introduce novel position probability distributions that may be used for algorithm development based on quantum-mechanical phenomena. Also, we numerically show that the skewness of position probability distribution produced by using coin initial state with various degrees of entanglement cannot be easily inferred.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Walks with Entangled Coins and Walkers in Superposition\",\"authors\":\"S. Venegas-Andraca\",\"doi\":\"10.1109/GLOCOMW.2018.8644206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalization of quantum walks with entangled coins consisting of a model of discrete quantum walks with coin pairs under various degrees of entanglement and walkers in quantum superposition as initial states. We introduce novel position probability distributions that may be used for algorithm development based on quantum-mechanical phenomena. Also, we numerically show that the skewness of position probability distribution produced by using coin initial state with various degrees of entanglement cannot be easily inferred.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Walks with Entangled Coins and Walkers in Superposition
We introduce a generalization of quantum walks with entangled coins consisting of a model of discrete quantum walks with coin pairs under various degrees of entanglement and walkers in quantum superposition as initial states. We introduce novel position probability distributions that may be used for algorithm development based on quantum-mechanical phenomena. Also, we numerically show that the skewness of position probability distribution produced by using coin initial state with various degrees of entanglement cannot be easily inferred.