迈向容错数字微流控芯片实验室:缺陷、故障建模、测试和重构

K. Chakrabarty
{"title":"迈向容错数字微流控芯片实验室:缺陷、故障建模、测试和重构","authors":"K. Chakrabarty","doi":"10.1109/BIOCAS.2008.4696941","DOIUrl":null,"url":null,"abstract":"Dependability is an important attribute for microfluidic lab-on-chip devices that are being developed for safety-critical applications such as point-of-care health assessment, air-quality monitoring, and food-safety testing. Therefore, these devices must be adequately tested after manufacture and during bioassay operations. This paper presents a survey of early work on fault tolerance in digital microfluidic lab-on-chip systems. Defects are related to logical fault models that can be viewed not only in terms of traditional shorts and opens, but which also target biochip functionality. Based on these fault models, test techniques for lab-on-chip devices and digital microfluidic modules are presented.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Towards fault-tolerant digital microfluidic lab-on-chip: Defects, fault modeling, testing, and reconfiguration\",\"authors\":\"K. Chakrabarty\",\"doi\":\"10.1109/BIOCAS.2008.4696941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependability is an important attribute for microfluidic lab-on-chip devices that are being developed for safety-critical applications such as point-of-care health assessment, air-quality monitoring, and food-safety testing. Therefore, these devices must be adequately tested after manufacture and during bioassay operations. This paper presents a survey of early work on fault tolerance in digital microfluidic lab-on-chip systems. Defects are related to logical fault models that can be viewed not only in terms of traditional shorts and opens, but which also target biochip functionality. Based on these fault models, test techniques for lab-on-chip devices and digital microfluidic modules are presented.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

可靠性是微流控芯片实验室设备的一个重要属性,这些设备正在开发用于安全关键应用,如即时健康评估、空气质量监测和食品安全测试。因此,这些设备必须在制造后和生物测定操作期间进行充分的测试。本文综述了数字微流控芯片实验室系统容错方面的早期工作。缺陷与逻辑故障模型有关,不仅可以从传统的短路和打开的角度来看待,而且还针对生物芯片的功能。基于这些故障模型,提出了芯片实验室设备和数字微流控模块的测试技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards fault-tolerant digital microfluidic lab-on-chip: Defects, fault modeling, testing, and reconfiguration
Dependability is an important attribute for microfluidic lab-on-chip devices that are being developed for safety-critical applications such as point-of-care health assessment, air-quality monitoring, and food-safety testing. Therefore, these devices must be adequately tested after manufacture and during bioassay operations. This paper presents a survey of early work on fault tolerance in digital microfluidic lab-on-chip systems. Defects are related to logical fault models that can be viewed not only in terms of traditional shorts and opens, but which also target biochip functionality. Based on these fault models, test techniques for lab-on-chip devices and digital microfluidic modules are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信