Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji
{"title":"基于Faster-RCNN的MURA数据库骨折检测与定位","authors":"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji","doi":"10.1109/ICSPIS54653.2021.9729393","DOIUrl":null,"url":null,"abstract":"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN\",\"authors\":\"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji\",\"doi\":\"10.1109/ICSPIS54653.2021.9729393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN
Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.