基于Faster-RCNN的MURA数据库骨折检测与定位

Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji
{"title":"基于Faster-RCNN的MURA数据库骨折检测与定位","authors":"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji","doi":"10.1109/ICSPIS54653.2021.9729393","DOIUrl":null,"url":null,"abstract":"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN\",\"authors\":\"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji\",\"doi\":\"10.1109/ICSPIS54653.2021.9729393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用计算机辅助诊断系统来帮助放射科医生和减少诊断时间是至关重要的。本文采用三种不同骨架结构的Faster-RCNN进行特征提取,对MURA数据库的骨x射线进行骨折区预测。我们只使用了数据库所有七个子集中的三个子集。这些亚群包括肱骨、肘部和前臂的x光片。实验结果表明,以Inception-ResNet-Version-2作为特征提取器的Faster-RCNN具有最好的性能。当IOU=50%时,该模型在参数设置的最佳条件下对试样的AP达到66.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN
Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信