用于医疗辅助系统的EOG信号处理模块

Alberto López, D. Fernandez, Francisco Javier Ferrero Martín, M. Valledor, O. Postolache
{"title":"用于医疗辅助系统的EOG信号处理模块","authors":"Alberto López, D. Fernandez, Francisco Javier Ferrero Martín, M. Valledor, O. Postolache","doi":"10.1109/MeMeA.2016.7533704","DOIUrl":null,"url":null,"abstract":"Electrooculography (EOG) is one of the occulography methods used for the estimation of eye orientation. These signals, generated by eye movements, can be used in an efficient way as input in different control systems. So, the signal processing of the EOG signal is a key point when performing complex tasks, for instance, in a Human-Machine Interface (HMI). In this sense machine learning algorithms allow patterns in data to be identified, and then, to predict future actions using those patterns that have been learned. This paper presents a signal processing module for EOG signals, applying Wavelets Transform (WT) as a denoising procedure and AdaBoost as a machine learning algorithm.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"EOG signal processing module for medical assistive systems\",\"authors\":\"Alberto López, D. Fernandez, Francisco Javier Ferrero Martín, M. Valledor, O. Postolache\",\"doi\":\"10.1109/MeMeA.2016.7533704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrooculography (EOG) is one of the occulography methods used for the estimation of eye orientation. These signals, generated by eye movements, can be used in an efficient way as input in different control systems. So, the signal processing of the EOG signal is a key point when performing complex tasks, for instance, in a Human-Machine Interface (HMI). In this sense machine learning algorithms allow patterns in data to be identified, and then, to predict future actions using those patterns that have been learned. This paper presents a signal processing module for EOG signals, applying Wavelets Transform (WT) as a denoising procedure and AdaBoost as a machine learning algorithm.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

眼电图(Electrooculography, EOG)是一种用于估计眼睛方向的眼视图方法。这些由眼球运动产生的信号可以有效地作为不同控制系统的输入。因此,在执行复杂任务时,例如在人机界面(HMI)中,EOG信号的信号处理是一个关键点。从这个意义上说,机器学习算法允许识别数据中的模式,然后使用这些学习到的模式来预测未来的行为。本文提出了一个EOG信号处理模块,该模块采用小波变换(wavelet Transform, WT)作为去噪过程,并采用AdaBoost作为机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EOG signal processing module for medical assistive systems
Electrooculography (EOG) is one of the occulography methods used for the estimation of eye orientation. These signals, generated by eye movements, can be used in an efficient way as input in different control systems. So, the signal processing of the EOG signal is a key point when performing complex tasks, for instance, in a Human-Machine Interface (HMI). In this sense machine learning algorithms allow patterns in data to be identified, and then, to predict future actions using those patterns that have been learned. This paper presents a signal processing module for EOG signals, applying Wavelets Transform (WT) as a denoising procedure and AdaBoost as a machine learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信