面向大数据分析的数据重构方法

Masataka Mito, K. Murata, Daisuke Eguchi, Yuichiro Mori, M. Toyonaga
{"title":"面向大数据分析的数据重构方法","authors":"Masataka Mito, K. Murata, Daisuke Eguchi, Yuichiro Mori, M. Toyonaga","doi":"10.1109/ICAWST.2018.8517197","DOIUrl":null,"url":null,"abstract":"In recent years, the big-data approach has become important within various business operations and salesjudgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces ofinformation are extracted from our data and the big-data.","PeriodicalId":277939,"journal":{"name":"2018 9th International Conference on Awareness Science and Technology (iCAST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Data Reconstruction Method for The Big-Data Analysis\",\"authors\":\"Masataka Mito, K. Murata, Daisuke Eguchi, Yuichiro Mori, M. Toyonaga\",\"doi\":\"10.1109/ICAWST.2018.8517197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the big-data approach has become important within various business operations and salesjudgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces ofinformation are extracted from our data and the big-data.\",\"PeriodicalId\":277939,\"journal\":{\"name\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2018.8517197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2018.8517197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,大数据方法在各种商业运作和销售判断策略中变得越来越重要。相反,大量的隐私问题限制了其分析技术的进步。为了缓解这些问题,本文提出了匿名化、极值记录消除、全加密分析等几种隐私保护方法。然而,对隐私泄露的担忧仍然存在,这阻碍了其他外部组织公开使用大数据。我们提出了一种本质上不使用隐私数据的大数据重构方法。该方法仅利用大数据的统计特征,即属性直方图及其相关系数。为了验证该方法是否可以提取有价值的信息,我们使用自组织地图(SOM)作为大数据分析工具之一对数据进行评估。结果表明,从我们的数据和大数据中提取的信息是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data Reconstruction Method for The Big-Data Analysis
In recent years, the big-data approach has become important within various business operations and salesjudgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces ofinformation are extracted from our data and the big-data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信